Advertisement

A Sub-Riemannian Modular Approach for Diffeomorphic Deformations

  • Barbara GrisEmail author
  • Stanley Durrleman
  • Alain Trouvé
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9389)

Abstract

We develop a generic framework to build large deformations from a combination of base modules. These modules constitute a dynamical dictionary to describe transformations. The method, built on a coherent sub-Riemannian framework, defines a metric on modular deformations and characterises optimal deformations as geodesics for this metric. We will present a generic way to build local affine transformations as deformation modules, and display examples.

Keywords

Vector Field Deformation Module Geometrical Descriptor Local Translation Compound Module 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Agrachev, A., Boscain, U., Charlot, G., Ghezzi, R., Sigalotti, M.: Two-dimensional almost-riemannian structures with tangency points. In: Proceedings of the 48th IEEE Conference on Decision and Control, 2009 held Jointly with the 2009 28th Chinese Control Conference, CDC/CCC 2009, pp. 4340–4345. IEEE (2009)Google Scholar
  2. 2.
    Arguillere, S.: Géométrie sous-riemannienne en dimension infinie et applications à l’analyse mathématique des formes. Ph.D. thesis, Paris 6 (2014)Google Scholar
  3. 3.
    Arsigny, V., Commowick, O., Ayache, N., Pennec, X.: A fast and log-euclidean polyaffine framework for locally linear registration. J. Math. Imaging Vis. 33(2), 222–238 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ashburner, J.: A fast diffeomorphic image registration algorithm. Neuroimage 38(1), 95–113 (2007)CrossRefGoogle Scholar
  5. 5.
    Charon, N., Trouvé, A.: The varifold representation of non-oriented shapes for diffeomorphic registration (2013). arXiv preprint arXiv:1304.6108
  6. 6.
    Durrleman, S., Prastawa, M., Gerig, G., Joshi, S.: Optimal data-driven sparse parameterization of diffeomorphisms for population analysis. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 123–134. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  7. 7.
    Grenander, U.: Elements of Pattern Theory. JHU Press, Baltimore (1996) zbMATHGoogle Scholar
  8. 8.
    Jacobs, H.: Symmetries in LDDMM with higher order momentum distributions (2013). arXiv preprint arXiv:1306.3309
  9. 9.
    Joshi, S., Lorenzen, P., Gerig, G., Bullitt, E.: Structural and radiometric asymmetry in brain images. Med. Image Anal. 7(2), 155–170 (2003)CrossRefGoogle Scholar
  10. 10.
    Miller, M.I., Trouvé, A., Younes, L.: On the metrics and euler-lagrange equations of computational anatomy. Ann. Rev. Biomed. Eng. 4(1), 375–405 (2002)CrossRefGoogle Scholar
  11. 11.
    Miller, M.I., Younes, L., Trouvé, A.: Diffeomorphometry and geodesic positioning systems for human anatomy. Technology 2(01), 36–43 (2014)CrossRefGoogle Scholar
  12. 12.
    Risser, L., Vialard, F., Wolz, R., Murgasova, M., Holm, D.D., Rueckert, D.: Simultaneous multi-scale registration using large deformation diffeomorphic metric mapping. IEEE Trans. Med. Imaging 30(10), 1746–1759 (2011)CrossRefGoogle Scholar
  13. 13.
    Rueckert, D., Aljabar, P., Heckemann, R.A., Hajnal, J.V., Hammers, A.: Diffeomorphic registration using B-Splines. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 702–709. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  14. 14.
    Seiler, C., Pennec, X., Reyes, M.: Capturing the multiscale anatomical shape variability with polyaffine transformation trees. Med. Image Anal. 16(7), 1371–1384 (2012)CrossRefGoogle Scholar
  15. 15.
    Sommer, S., Lauze, F., Nielsen, M., Pennec, X.: Sparse multi-scale diffeomorphic registration: the kernel bundle framework. J. Math. Imaging Vis. 46(3), 292–308 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Sommer, S., Nielsen, M., Darkner, S., Pennec, X.: Higher-order momentum distributions and locally affine LDDMM registration. SIAM J. Imaging Sci. 6(1), 341–367 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Vaillant, M., Miller, M.I., Younes, L., Trouvé, A.: Statistics on diffeomorphisms via tangent space representations. NeuroImage 23, S161–S169 (2004)CrossRefGoogle Scholar
  18. 18.
    Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Symmetric log-domain diffeomorphic registration: a demons-based approach. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 754–761. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  19. 19.
    Younes, L.: Constrained diffeomorphic shape evolution. Found. Comput. Math. 12(3), 295–325 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Zhang, W., Noble, J.A., Brady, J.M.: Adaptive non-rigid registration of real time 3D ultrasound to cardiovascular MR images. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 50–61. Springer, Heidelberg (2007) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Barbara Gris
    • 1
    • 2
    Email author
  • Stanley Durrleman
    • 2
  • Alain Trouvé
    • 1
  1. 1.CMLA, UMR 8536École normale supérieure de CachanCachanFrance
  2. 2.Inria Paris-RocquencourtSorbonne Universités, UPMC Univ Paris 06 UMR S1127, Inserm U1127, CNRS UMR 7225, ICMParisFrance

Personalised recommendations