Skip to main content

An Information Geometry Problem in Mathematical Finance

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9389))

Abstract

Familiar approaches to risk and preferences involve minimizing the expectation \(E_{{\mathrm{I}\!\mathrm{P}}}(X)\) of a payoff function X over a family \(\varGamma \) of plausible risk factor distributions \({\mathrm{I}\!\mathrm{P}}\). We consider \(\varGamma \) determined by a bound on a convex integral functional of the density of \({\mathrm{I}\!\mathrm{P}}\), thus \(\varGamma \) may be an I-divergence (relative entropy) ball or some other f-divergence ball or Bregman distance ball around a default distribution \({{\mathrm{I}\!\mathrm{P}}_0}\). Using a Pythagorean identity we show that whether or not a worst case distribution exists (minimizing \(E_{\mathrm{I}\!\mathrm{P}}(X)\) subject to \({\mathrm{I}\!\mathrm{P}}\in \varGamma \)), the almost worst case distributions cluster around an explicitly specified, perhaps incomplete distribution. When \(\varGamma \) is an f-divergence ball, a worst case distribution either exists for any radius, or it does/does not exist for radius less/larger than a critical value. It remains open how far the latter result extends beyond f-divergence balls.

ICs acknowledges support by the Hungarian National Foundation for Scientific Research OTKA, grant No. K105840. TB acknowledges support by the Josef Ressel Centre for Applied Scientific Computing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This means that \(\mu (\{{\omega }\in C: \vert p_n({\omega }) - {q_{\theta _2}}({\omega }) \vert > \epsilon \})\rightarrow 0\) for each \(C\subset \varOmega \) with \(\mu ( C )\) finite, and any \(\epsilon > 0\). If \(\mu \) is a finite measure, this is equivalent to standard (global) convergence in measure.

References

  1. Ahmadi-Javid, A.: Entropic value at risk: a new coherent risk measure. J. Optim. Theor. Appl. 155(3), 1105–1123 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ben-Tal, A., Teboulle, M.: An old-new concept of convex risk measures: the optimized certainty equivalent. Math. Finance 17, 449–476 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bregman, L.M.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7, 200–217 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  4. Breuer, T., Csiszár, I.: Measuring distribution model risk. Math. Finance (2013). doi:10.1111/mafi.12050

  5. Csiszár, I.: Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten. Publ. Math. Insti. Hung. Acad. Sci. 8, 85–108 (1963)

    MATH  Google Scholar 

  6. Imre Csiszár and Thomas Breuer. Almost worst case distributions in multiple priors models. http://arxiv.org/abs/1506.01619 (2015)

  7. Csiszár, I., Matúš, F.: On minimization of entropy functionals under moment constraints. Kybernetika 48, 637–689 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Föllmer, H., Schied, A.: Stochastic Finance: An Introduction in Discrete Time. de Gruyter Studies in Mathematics, vol. 27, 2nd edn. Walter de Gruyter, Berlin (2004)

    Book  MATH  Google Scholar 

  9. Gilboa, I.: Theory of Decision Under Uncertainty. Econometric Society Monographs, vol. 45. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  10. Hansen, L.P., Sargent, T.: Robust control and model uncertainty. Am. Econ. Rev. 91, 60–66 (2001)

    Article  Google Scholar 

  11. Hansen, L.P., Sargent, T.: Robustness. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  12. Maccheroni, F., Marinacci, M., Rustichini, A.: Ambiguity aversion, robustness, and the variational representation of preferences. Econometrica 74, 1447–1498 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Grundlehren der Mathematischen Wissenschaften, vol. 317. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  14. Strzalecki, T.: Axiomatic foundations of multiplier preferences. Econometrica 79, 47–73 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imre Csiszár .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Csiszár, I., Breuer, T. (2015). An Information Geometry Problem in Mathematical Finance. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2015. Lecture Notes in Computer Science(), vol 9389. Springer, Cham. https://doi.org/10.1007/978-3-319-25040-3_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25040-3_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25039-7

  • Online ISBN: 978-3-319-25040-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics