Skip to main content

Texture Classification Using Rao’s Distance on the Space of Covariance Matrices

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9389))

Included in the following conference series:

Abstract

The current paper introduces new prior distributions on the zero-mean multivariate Gaussian model, with the aim of applying them to the classification of covariance matrices populations. These new prior distributions are entirely based on the Riemannian geometry of the multivariate Gaussian model. More precisely, the proposed Riemannian Gaussian distribution has two parameters, the centre of mass \(\bar{Y}\) and the dispersion parameter \(\sigma \). Its density with respect to Riemannian volume is proportional to \(\exp (-d^2(Y; \bar{Y}))\), where \(d^2(Y; \bar{Y})\) is the square of Rao’s Riemannian distance. We derive its maximum likelihood estimators and propose an experiment on the VisTex database for the classification of texture images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amari, S., Nagaoka, H.: Methods of Information Geometry. American Mathematical Society, Providence (2000)

    MATH  Google Scholar 

  2. Porikli, F., Tuzel, O., Meer, P.: Covariance tracking using model update based means on Riemannian manifolds. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 728–735 (2006)

    Google Scholar 

  3. Kurtek, S., Klassen, E., Ding, Z., Avison, M.J., Srivastava, A.: Parameterization-invariant shape statistics and probabilistic classification of anatomical surfaces. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 147–158. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Gu, X., Deng, J., Purvis, M.: Improving superpixel-based image segmentation by incorporating color covariance matrix manifolds. In: International Conference on Image Processing (ICIP), pp. 4403–4406 (2014)

    Google Scholar 

  5. Said, S., Bombrun, L., Berthoumieu, Y.: New Riemannian priors on the univariate normal model. Entropy 16(7), 4015–4031 (2014)

    Article  MathSciNet  Google Scholar 

  6. Weickert, J., Hagen, H. (eds.): Visualization and Processing of Tensor Fields. Mathematics Visualization. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  7. Muirhead, R.J.: Aspects of Multivariate Statistical Theory. Wiley, New York (1982)

    Book  MATH  Google Scholar 

  8. Atkinson, C., Mitchell, A.: Rao’s distance measure. Sankhya Ser. A 43, 345–365 (1981)

    MathSciNet  MATH  Google Scholar 

  9. Terras, A.: Harmonic Analysis on Symmetric Spaces and Applications II. Springer, New York (1988)

    Book  MATH  Google Scholar 

  10. Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces. Americal Mathematical Society, Providence (2001)

    Book  MATH  Google Scholar 

  11. Pennec, X.: Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measurements. J. Math. Imaging Vis. 25(1), 127–154 (2006)

    Article  MathSciNet  Google Scholar 

  12. Lenglet, C., Rousson, M., Deriche, R., Faugeras, O.: Statistics on the manifold of multivariate normal distributions. J. Math. Imaging Vis. 25(3), 423–444 (2006)

    Article  MathSciNet  Google Scholar 

  13. Mengersen, K., Robert, C., Titterington, M.: Mixtures : Estimation and Applications. Wiley, Chichester (2011)

    Book  MATH  Google Scholar 

  14. Saravanan, T.: MIT Vision and Modeling Group. Vision Texture. VisTex : Vision Texture Database. http://vismod.media.mit.edu/pub/vistex

  15. Barachant, A., Bonnet, S., Congedo, M., Jutten, C.: Multiclass brain-computer interface classification by Riemannian geometry. IEEE Trans. Biomed. Eng. 59(4), 920–928 (2012)

    Article  Google Scholar 

  16. Grigorescu, S., Petkov, N., Kruizinga, P.: Comparison of texture features based on Gabor filters. IEEE Trans. Im. Proc. 11(10), 1160–1167 (2002)

    Article  MathSciNet  Google Scholar 

  17. Said, S., Bombrun, L., Berthoumieu, Y.: Texture classification using Rao’s distance: an EM algorithm on the Poincaré half plane. In: International Conference on Image Processing (ICIP) (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lionel Bombrun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Said, S., Bombrun, L., Berthoumieu, Y. (2015). Texture Classification Using Rao’s Distance on the Space of Covariance Matrices. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2015. Lecture Notes in Computer Science(), vol 9389. Springer, Cham. https://doi.org/10.1007/978-3-319-25040-3_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25040-3_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25039-7

  • Online ISBN: 978-3-319-25040-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics