Advertisement

Matrix Realization of a Homogeneous Cone

  • Hideyuki IshiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9389)

Abstract

Based on the theory of compact normal left-symmetric algebra (clan), we realize every homogeneous cone as a set of positive definite real symmetric matrices, where homogeneous Hessian metrics as well as a transitive group action on the cone are described efficiently.

Keywords

Homogeneous cone Left-symmetric algebra Hessian metric 

References

  1. 1.
    Andersson, S.A., Wojnar, G.G.: Wishart distributions on homogeneous cones. J. Theor. Probab. 17, 781–818 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Boyom, M.N.: The cohomology of Koszul-Vinberg algebra nd related topics. Afr. Diaspora J. Math. (New Ser.) 9, 53–65 (2010)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Chua, C.B.: Relating homogeneous cones and positive definite cones via \(T\)-algebras. SIAM J. Optim. 14, 500–506 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Graczyk, P., Ishi, H.: Riesz measures and Wishart laws associated to quadratic maps. J. Math. Soc. Jpn. 66, 317–348 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Güler, O., Tunçel, L.: Characterization of the barrier parameter of homogeneous convex cones. Math. Program. A 81, 55–76 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ishi, H.: Representation of clans and homogeneous cones. Vestnik Tambov Univ. 16, 1669–1675 (2011)Google Scholar
  7. 7.
    Ishi, H.: Homogeneous cones and their applications to statistics. In: Modern Methods of Multivariate Statistics, Hermann, Paris, pp. 135–154 (2014)Google Scholar
  8. 8.
    Kai, C., Nomura, T.: A characterization of symmetric cones through pseudoinverse maps. J. Math. Soc. Jpn. 57, 195–215 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kaneyuki, S., Tsuji, T.: Classification of homogeneous bounded domains of lower dimension. Nagoya Math. J. 53, 1–46 (1974)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Manchon, D.: A short survey on pre-Lie algebras. In: Noncommutative Geometry and Physics: Renormalisation, Motives, Index Theory, pp. 89–102 (2011). ESI Lect. Math. Phys., Eur. Math. Soc., ZurichGoogle Scholar
  11. 11.
    Rothaus, O. S.: The construction of homogeneous convex cones. Ann. of Math. 83, 358–376 (1966). Correction: ibid 87, 399 (1968)Google Scholar
  12. 12.
    Shima, H.: Homogeneous Hessian manifolds. Ann. Inst. Fourier Grenoble 30, 91–128 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Shima, H.: The geometry of Hessian structures. World Scientific Publishing, Hackensack (2007)CrossRefzbMATHGoogle Scholar
  14. 14.
    Truong, V.A., Tunçel, L.: Geometry of homogeneous convex cones, duality mapping, and optimal self-concordant barriers. Math. Program. 100, 295–316 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Vinberg, E.B.: The theory of convex homogeneous cones. Trans. Moscow Math. Soc. 12, 340–403 (1963)zbMATHGoogle Scholar
  16. 16.
    Xu, Y.-C.: Theory of Complex Homogeneous Bounded Domains. Kluwer, Dordrecht (2005)Google Scholar
  17. 17.
    Yamasaki, T., Nomura, T.: Realization of homogeneous cones through oriented graphs. Kyushu J. Math. 69, 11–48 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Zhong, J.-Q., Lu, Q.-K.: The realization of affine homogeneous cones. Acta Math. Sinica 24, 116–142 (1981)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Graduate School of MathematicsNagoya UniversityFuro-cho, NagoyaJapan

Personalised recommendations