Asymptotic Properties of Random Polytopes

  • Pierre CalkaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9389)


Random polytopes have constituted some of the central objects of stochastic geometry for more than 150 years. They are in general generated as convex hulls of a random set of points in the Euclidean space. The study of such models requires the use of ingredients coming from both convex geometry and probability theory. In the last decades, the study has been focused on their asymptotic properties and in particular expectation and variance estimates. In several joint works with Tomasz Schreiber and J. E. Yukich, we have investigated the scaling limit of several models (uniform model in the unit-ball, uniform model in a smooth convex body, Gaussian model) and have deduced from it limiting variances for several geometric characteristics including the number of k-dimensional faces and the volume. In this paper, we survey the most recent advances on these questions and we emphasize the particular cases of random polytopes in the unit-ball and Gaussian polytopes.


Convex Hull Central Limit Theorem Convex Body Gaussian Model Variance Asymptotics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Affentranger, F., Schneider, R.: Random projections of regular simplices. Discret. Comput. Geom. 7, 219–226 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bárány, I.: Random polytopes in smooth convex bodies. Mathematika 39, 81–92 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bárány, I.: Sylvesters question: the probability that n points are in convex position. Ann. Probab. 27, 2020–2034 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bárány, I., Buchta, C.: Random polytopes in a convex polytope, independence of shape, and concentration of vertices. Math. Ann. 297, 467–497 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bárány, I., Reitzner, M.: Poisson polytopes. Ann. Probab. 38, 1507–1531 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bárány, I., Reitzner, M.: The variance of random polytopes. Adv. Math. 225, 1986–2001 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bárány, I., Vu, H.V.: Central limit theorems for Gaussian polytopes. Ann. Probab. 35, 1593–1621 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Baryshnikov, Y.M., Vitale, R.A.: Regular simplices and Gaussian samples. Discret. Comput. Geom. 11, 141–147 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Blaschke, W.: Über affine Geometrie XI: Losung des Vierpunk- tproblemsvon Sylvester aus der Theorie der geometrischen Wahrschein- lichkeiten. Ber. Verh. S achs. Ges. Wiss. Leipzig, Math.-Phys. Kl. 69, 436–453 (1917)Google Scholar
  10. 10.
    Calka, P., Schreiber, T.: Large deviation probabilities for the number of vertices of random polytopes in the ball. Adv. Appl. Probab. 38, 47–58 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Calka, P., Yukich, J.E.: Variance asymptotics for random polytopes in smooth convex bodies. Probab. Theor. Relat. Fields 158, 435–463 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Calka, P., Yukich, J.E.: Variance asymptotics and scaling limits for Gaussian Polytopes. Probability Theory and Related Fields (2015, to appear).
  13. 13.
    Calka, P., Schreiber, T., Yukich, J.E.: Brownian limits, local limits, and variance asymptotics for convex hulls in the ball. Ann. Probab. 41, 50–108 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Geffroy, J.: Localisation asymptotique du polyèdre d’appui d’un échantillon Laplacien à \(k\) dimensions. Publ. Inst. Stat. Univ. Paris 10, 213–228 (1961)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Groeneboom, P.: Limit theorems for convex hulls. Probab. Theor. Relat. Fields 79, 327–368 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hsing, T.: On the asymptotic distribution of the area outside a random convex hull in a disk. Ann. Appl. Probab. 4, 478–493 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Reitzner, M.: Stochastical approximation of smooth convex bodies. Mathematika 51, 11–29 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Reitzner, M.: Central limit theorems for random polytopes. Probab. Theor. Relat. Fields 133, 483–507 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Reitzner, M.: The combinatorial structure of random polytopes. Adv. Math. 191, 178–208 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Reitzner, M.: Random polytopes. In: Kendall, W.S., Molchanov, I. (eds.) New Perspectives in Stochastic Geometry, pp. 45–77. Oxford University Press, Oxford (2010)Google Scholar
  21. 21.
    Rényi, A., Sulanke, R.: Über die konvexe Hülle von \(n\) zufállig gewählten Punkten. Z. Wahrscheinlichkeitstheorie und verw. Gebiete 2, 75–84 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Rényi, A., Sulanke, R.: Über die konvexe Hülle von \(n\) zufállig gewählten Punkten II. Z. Wahrscheinlichkeitstheorie und verw. Gebiete 3, 138–147 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Schneider, R., Weil, W.: Stochastic and Integral Geometry. Springer, Heidelberg (2008)CrossRefzbMATHGoogle Scholar
  24. 24.
    Schneider, R., Wieacker, J.A.: Random polytopes in a convex body. Z. Wahrsch. Verw. Geb. 52, 69–73 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Schreiber, T., Yukich, J.E.: Variance asymptotics and central limit theorems for generalized growth processes with applications to convex hulls and maximal points. Ann. Probab. 36, 363–396 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Valtr, P.: The probability that n random points in a triangle are in convex position. Combinatorica 16, 567–573 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Vu, V.H.: Sharp concentration of random polytopes. Geom. Funct. Anal. 15, 1284–1318 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Vu, V.H.: Central limit theorems for random polytopes in a smooth convex set. Adv. Math. 207, 221–243 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Wendel, J.G.: A problem in geometric probability. Math. Scand. 11, 109–111 (1962)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques Raphaël Salem (UMR 6085)Université de RouenMont-Saint-AignanFrance

Personalised recommendations