Advertisement

Asymptotics of Superposition of Point Processes

  • L. Decreusefond
  • A. VasseurEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9389)

Abstract

The characteristic independence property of Poisson point processes gives an intuitive way to explain why a sequence of point processes becoming less and less repulsive can converge to a Poisson point process. The aim of this paper is to show this convergence for sequences built by superposing, thinning or rescaling determinantal processes. We use Papangelou intensities and Stein’s method to prove this result with a topology based on total variation distance.

Keywords

Stochastic geometry Ginibre point process \(\beta \)-Ginibre point process Poisson point process Stein’s method 

References

  1. 1.
    Coutin, L., Decreusefond, L.: Stein’s method for Brownian approximations. Commun. Stoch. Anal. 7, 349–372 (2013)MathSciNetGoogle Scholar
  2. 2.
    Decreusefond, L., Joulin, A., Savy, N.: Upper bounds on Rubinstein distances on configuration spaces and applications. Commun. Stoch. Anal. 4(3), 377–399 (2010). http://hal.archives-ouvertes.fr/hal-00347899/fr/
  3. 3.
    Decreusefond, L., Schulte, M., Thäle, C.: Functional Poisson approximation in Rubinstein distance. Annals of Probability (2015). http://de.arxiv.org/abs/1406.5484
  4. 4.
    Decreusefond, L., Vasseur, A.: Asymptotics of superpositions and thinnings of point processes, in preparationGoogle Scholar
  5. 5.
    Georgii, H.O., Yoo, H.J.: Conditional intensity and gibbsianness of determinantal point processes. J. Stat. Phys. 118, 55–84 (2004). http://arxiv.org/pdf/math/0401402v2.pdf
  6. 6.
    Gomez, J.S., Vasseur, A., Vergne, A., Decreusefond, L., Martins, P., Chen, W.: A case study on regularity in cellular network deployment. Wireless Communications Letters (2015)Google Scholar
  7. 7.
    Kallenberg, O.: Random Measures, 3rd edn. Academic Press, New York (1983)zbMATHGoogle Scholar
  8. 8.
    Shirai, T., Takahashi, Y.: Random point fields associated with certain Fredholm determinants ii: Fermion shifts and their ergodic and Gibbs properties. Ann. Probab. 31(3), 1533–1564 (2003). http://www.jstor.org/stable/3481499

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institut Mines-TelecomTelecom ParisTech, LTCI UMR 5141ParisFrance

Personalised recommendations