The Extremal Index for a Random Tessellation

  • Nicolas ChenavierEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9389)


Let \(m\) be a random tessellation in \(\mathbf {R}^d\), \(d\ge 1\), observed in the window \(\mathbf {W}_{\!\rho }=\rho ^{1/d}[0,1]^d\), \(\rho >0\), and let f be a geometrical characteristic. We investigate the asymptotic behaviour of the maximum of f(C) over all cells \(C\in m\) with nucleus in \(\mathbf {W}_{\!\rho }\) as \(\rho \) goes to infinity. When the normalized maximum converges, we show that its asymptotic distribution depends on the so-called extremal index. Two examples of extremal indices are provided for Poisson-Voronoi and Poisson-Delaunay tessellations.


Random tessellations Extreme values Poisson point process 


  1. 1.
    Baccelli,F., Blaszczyszyn, B.: Stochastic Geometry and Wireless Networks Volume 2: Applications, Foundations and Trends in Networkin: Vol. 1: Theory, Vol. 2: Applications No 1-2 (2009)Google Scholar
  2. 2.
    Calka, P., Chenavier, N.: Extreme values for characteristic radii of a Poisson-Voronoi tessellation. Extremes 17, 359–385 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chenavier, N.: A general study of extremes of stationary tessellations with examples. Stochast. Process. Appl. 124, 2917–2953 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chenavier, N., Hemsley, R.: Extremes for the inradius in the Poisson line tessellation. In: Advances in Applied Probability. (2015, to appear)
  5. 5.
    Leadbetter, M.R.: Extremes and local dependence in stationary sequences. Z. Wahrsch. Verw. Gebiete 65, 291–306 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Okabe, A., Boot, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 2nd edn. Wiley, New York (2000). Wiley Series in Probability and StatisticsCrossRefzbMATHGoogle Scholar
  7. 7.
    Penrose, M.: Random geometric graphs. Oxford Stud. Probab. 5, 344 (2003)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Robert, C.Y.: Inference for the limiting cluster size distribution of extreme values. Ann. Statist. 37, 271–310 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Schaap, W.: DTFE: the Delaunay Tessellation Field Estimator, Ph.D thesis (2007)Google Scholar
  10. 10.
    Weil, R., Weil, W.: Stochastic and Integral Geometry. Probability and Its Applications, 1st edn. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  11. 11.
    Schulte, M., Thäle, C.: The scaling limit of Poisson-driven order statistics with applications in geometric probability. Stochast. Process. Appl. 122, 4096–4120 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Smith, R.L., Weissman, I.: Estimating the extremal index. J. Roy. Statist. Soc. Ser. B 56, 515–528 (1994)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Španěl, M., Kršek, P., Švub, M., Štancl, V., Šiler, O.: Delaunay-based vector segmentation of volumetric medical images. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds.) CAIP 2007. LNCS, vol. 4673, pp. 261–269. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  14. 14.
    Zaninetti, L.: The oscillating behavior of the pair correlation function in galaxies. Appl. Phys. Res. 6, 35–46 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Université du Littoral Côte D’OpaleCalaisFrance

Personalised recommendations