Spherical Parameterization for Genus Zero Surfaces Using Laplace-Beltrami Eigenfunctions

  • Julien LefèvreEmail author
  • Guillaume Auzias
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9389)


In this work, we propose a fast and simple approach to obtain a spherical parameterization of a certain class of closed surfaces without holes. Our approach relies on empirical findings that can be mathematically investigated, to a certain extent, by using Laplace-Beltrami Operator and associated geometrical tools. The mapping proposed here is defined by considering only the three first non-trivial eigenfunctions of the Laplace-Beltrami Operator. Our approach requires a topological condition on those eigenfunctions, whose nodal domains must be 2. We show the efficiency of the approach through numerical experiments performed on cortical surface meshes.


Riemannian manifold Laplace-Beltrami Operator Surface parameterization Nodal domains 



We would like to thank the reviewers for their very constructive comments. In particular a careful observation by one the reviewer is at the origin of the Remark 4 and of important modifications in the structure of the manuscript.


  1. 1.
    Auzias, G., Lefevre, J., Le Troter, A., Fischer, C., Perrot, M., Régis, J., Coulon, O.: Model-driven harmonic parameterization of the cortical surface: Hip-hop. IEEE Trans. Med. Imaging 32(5), 873–887 (2013)CrossRefGoogle Scholar
  2. 2.
    Bates, J.: The embedding dimension of laplacian eigenfunction maps. Appl. Comput. Harmonic Anal. 37(3), 516–530 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bérard, P.: Volume des ensembles nodaux des fonctions propres du Laplacien. Séminaire de Théorie Spectrale et Géométrie 3, 1–9 (1984)CrossRefGoogle Scholar
  4. 4.
    Cheng, S.-Y.: Eigenfunctions and nodal sets. Commentarii Mathematici Helvetici 51(1), 43–55 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fischl, B., Sereno, M.I., Dale, A.M.: Cortical surface-based analysis: II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 9(2), 195–207 (1999)CrossRefGoogle Scholar
  6. 6.
    Germanaud, D., Lefèvre, J., Toro, R., Fischer, C., Dubois, J., Hertz-Pannier, L., Mangin, J.-F.: Larger is twistier: spectral analysis of gyrification (spangy) applied to adult brain size polymorphism. NeuroImage 63(3), 1257–1272 (2012)CrossRefGoogle Scholar
  7. 7.
    Gu, X., Wang, Y., Chan, T.F., Thompson, P.M., Yau, S.T.: Genus zero surface conformal mapping and its application to brain surface mapping. IEEE Trans. Med. Imaging 23(8), 949–958 (2004)CrossRefGoogle Scholar
  8. 8.
    Lai, R., Wen, Z., Yin, W., Gu, X., Lui, L.M.: Folding-free global conformal mapping for genus-0 surfaces by harmonic energy minimization. J. Sci. Comput. 58(3), 705–725 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Lefèvre, J., Intwali, V., Hertz-Pannier, L., Hüppi, P.S., Mangin, J.-F., Dubois, J., Germanaud, D.: Surface smoothing: a way back in early brain morphogenesis. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 590–597. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  10. 10.
    Lombaert, H., Sporring, J., Siddiqi, K.: Diffeomorphic spectral matching of cortical surfaces. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 376–389. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  11. 11.
    Sheffer, A., Praun, E., Rose, K.: Mesh parameterization methods and their applications. Found. Trends\(\textregistered \) Comput. Graph. Vision 2(2), 105–171 (2006)Google Scholar
  12. 12.
    Zelditch, S.: Local and global analysis of eigenfunctions. arXiv preprint arXiv:0903.3420 (2009)

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Aix-Marseille Université, LSIS, CNRS UMR 7296MarseilleFrance
  2. 2.Institut de Neurosciences de la Timone UMR 7289Aix Marseille Université CNRSMarseilleFrance

Personalised recommendations