Skip to main content

Evolution Equations with Anisotropic Distributions and Diffusion PCA

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9389))

Included in the following conference series:

Abstract

This paper presents derivations of evolution equations for the family of paths that in the Diffusion PCA framework are used for approximating data likelihood. The paths that are formally interpreted as most probable paths generalize geodesics in extremizing an energy functional on the space of differentiable curves on a manifold with connection. We discuss how the paths arise as projections of geodesics for a (non bracket-generating) sub-Riemannian metric on the frame bundle. Evolution equations in coordinates for both metric and cometric formulations of the sub-Riemannian geometry are derived. We furthermore show how rank-deficient metrics can be mixed with an underlying Riemannian metric, and we use the construction to show how the evolution equations can be implemented on finite dimensional LDDMM landmark manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sommer, S.: Diffusion Processes and PCA on Manifolds, Mathematisches Forschungsinstitut Oberwolfach (2014)

    Google Scholar 

  2. Sommer, S.: Anisotropic distributions on manifolds: template estimation and most probable paths. In: Ourselin, S., Alexander, D.C., Westin, C.-F., Cardoso, M.J. (eds.) IPMI 2015. LNCS, vol. 9123, pp. 193–204. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  3. Hsu, E.P.: Stochastic Analysis on Manifolds. American Mathematical Soc, Providence (2002)

    Book  MATH  Google Scholar 

  4. Fletcher, P., Lu, C., Pizer, S., Joshi, S.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans. Med. Imaging 23(8), 995–1005 (2004)

    Article  Google Scholar 

  5. Vaillant, M., Miller, M., Younes, L., Trouvé, A.: Statistics on diffeomorphisms via tangent space representations. NeuroImage 23(Supplement 1), S161–S169 (2004)

    Article  Google Scholar 

  6. Huckemann, S., Hotz, T., Munk, A.: Intrinsic shape analysis: geodesic PCA for riemannian manifolds modulo isometric lie group actions. Stat. Sin. 20(1), 1–100 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Sommer, S.: Horizontal dimensionality reduction and iterated frame bundle development. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2013. LNCS, vol. 8085, pp. 76–83. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. J. Roy. Stat. Soc. Ser. B 61(3), 611–622 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhang, M., Fletcher, P.: Probabilistic principal geodesic analysis. In: NIPS, pp. 1178–1186 (2013)

    Google Scholar 

  10. Elworthy, D.: Geometric aspects of diffusions on manifolds. In: Hennequin, P.L. (ed.) École d’Été de Probabilités de Saint-Flour XV-XVII, 1985–87. Lecture Notes in Mathematics, vol. 1362, pp. 277–425. Springer, Heidelberg (1988)

    Chapter  Google Scholar 

  11. Andersson, L., Driver, B.K.: Finite dimensional approximations to wiener measure and path integral formulas on manifolds. J. Funct. Anal. 165(2), 430–498 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fujita, T., Kotani, S.I.: The onsager-machlup function for diffusion processes. J. Math. Kyoto Univ. 22(1), 115–130 (1982)

    MathSciNet  MATH  Google Scholar 

  13. Strichartz, R.S.: Sub-riemannian geometry. J. Differ. Geom. 24(2), 221–263 (1986)

    MathSciNet  MATH  Google Scholar 

  14. Mok, K.P.: On the differential geometry of frame bundles of riemannian manifolds. J. Fur Die Reine Und Angew. Math. 1978(302), 16–31 (1978)

    MathSciNet  MATH  Google Scholar 

  15. Younes, L.: Shapes and Diffeomorphisms. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  16. Micheli, M.: The differential geometry of landmark shape manifolds: metrics, geodesics, and curvature. Ph.D. thesis, Brown University, Providence, USA (2008)

    Google Scholar 

Download references

Acknowledgement

The author wishes to thank Peter W. Michor and Sarang Joshi for suggestions for the geometric interpretation of the sub-Riemannian metric on FM and discussions on diffusion processes on manifolds. This work was supported by the Danish Council for Independent Research and the Erwin Schrödinger Institute in Vienna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Sommer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Sommer, S. (2015). Evolution Equations with Anisotropic Distributions and Diffusion PCA. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2015. Lecture Notes in Computer Science(), vol 9389. Springer, Cham. https://doi.org/10.1007/978-3-319-25040-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25040-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25039-7

  • Online ISBN: 978-3-319-25040-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics