Skip to main content

Mass Transfer Equipment

  • Chapter
  • First Online:
Handbook of Food Processing Equipment

Part of the book series: Food Engineering Series ((FSES))

Abstract

Mass transfer operations are used in several food process industries in various physical separations of components from liquids or solids for recovering valuable products, or for removing undesirable food or nonfood components. They differ from mechanical separations (Chap. 5) in the controlling transport mechanism, which is mass transfer at the molecular level, while mechanical separations are based on differences in macroscopic size, shape, and density of solid particles or pieces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AIChE (1958) Bubble tray manual. American Institute of Chemical Engineers, New York

    Google Scholar 

  • AIChE (2000) Distillation in practice. CD-ROM. American Institute of Chemical Engineers, New York

    Google Scholar 

  • Aquilera JM, Stanley DW (1999) Microstructural principles of food processing and engineering, 2nd edn. Aspen, Gaithersburg

    Google Scholar 

  • Billet R (1973) Industrielle destillation. Verlag Chemie, Weinheim

    Google Scholar 

  • Bischoff G et al (1978) Fleischverarbeitung. Mermann Schroedel Verlag KG, Hannover

    Google Scholar 

  • Bomben JL, Mannheim HC, Morgan AI Jr (1967) Operating conditions for aroma recovery by new vacuum stripping method and evaluation of aroma solutions. Fruchtsaft Ind 12(2):44–53

    CAS  Google Scholar 

  • Bomben JL, Bruin S, Thijssen HAC, Merson LR (1973) Aroma recovery and retention in concentration and drying of foods. Adv Food Res 20:1–112

    Article  CAS  Google Scholar 

  • Brennan JC, Butters JR, Cowell NP, Lilly AEV (1990) Food engineering operations, 3rd edn. Applied Science Publ, London

    Google Scholar 

  • Bruin S (1969) Activity coefficients and plate efficiencies in distillation of multicomponent aqueous solutions. Doctoral thesis, Wageningen University, Wageningen, Holland: H. Veenman and Zonen N.V.

    Google Scholar 

  • Casimir DJ, Craig AM (1990) Flavor recovery using the Australian spinning cone column. In: Spiess WEL, Schubert H (eds) Engineering and food, vol 3. Elsevier Applied Science, New York, pp 100–117

    Google Scholar 

  • Cheryan M (1998) Ultrafiltration and microfiltration handbook. Technomic, Lancaster

    Google Scholar 

  • Cussler E (1997) Diffusion mass transfer in fluid systems, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Frendeslund J, Gmehling JA, Rasmussen R (1977) Vapor-liquid equilibria using UNIFAC. Elsevier, Amsterdam

    Google Scholar 

  • Gekas V (1992) Transport phenomena of foods and biological materials. CRC Press, New York

    Google Scholar 

  • Gmehling J, Onken U, Arlt W (1984) Vapor-liquid equilibrium data collection. Chemistry data series vol 1, parts 1–8. DECHEMA, Frankfurt/Main

    Google Scholar 

  • Grandison AS, Lewis MJ (1996) Separation processes in the food and biotechnology industries. Technomic, Lancaster

    Book  Google Scholar 

  • Gray C (1993) History of the spinning cone column. In: Downing DL (ed) Juice technology workshop. NY State Agr. Exp. Station, Cornell University, New York, pp 31–37. Special report no. 67

    Google Scholar 

  • Heiss R (1991) Lebensmitteltechnologie. Springer, Berlin

    Book  Google Scholar 

  • Heldman DR, Hartel RW (1997) Principles of food processing. Chapman and Hall, New York

    Google Scholar 

  • Holland CD (1981) Fundamentals of multicomponent distillation. McGraw-Hill, New York

    Google Scholar 

  • Hui YH (ed) (1996) Bailey’s industrial oil and fat products, vol 4, 5th edn, Edible oil and fat products. Wiley, New York

    Google Scholar 

  • Karlsson HOE, Tragardh G (1997) Aroma recovery during beverage processing. J Food Eng 34:179–178

    Article  Google Scholar 

  • Kimball DA (1999) Citrus processing, 2nd edn. Aspen, Gaithersburg

    Book  Google Scholar 

  • King CJ (1982) Separation processes. McGraw-Hill, New York

    Google Scholar 

  • Kirschbaum E (1969) Destillier und Rektifiziertechnik. Springer, Berlin

    Book  Google Scholar 

  • Lazarides H, Iakovidis A, Scwartzberg HG (1990) Aroma loss and recovery during falling film evaporation. In: Spiess WEL, Schubert H (eds) Engineering and food, vol 3. Elsevier Applied Science, New York, pp 96–105

    Google Scholar 

  • Lewis MJ (1990) Physical properties of foods and food processing systems. Ellis Horwood, Amsterdam

    Book  Google Scholar 

  • Marinos-Kouris D, Saravacos GD (1974) Distillation of volatile compounds from aqueous solutions in an agitated film evaporator. In: Proceedings joint GVC/AIChE meeting, vol IV, paper G5-3, Munich, Germany

    Google Scholar 

  • Mermelstein NH (2000) Removing alcohol from wine. Food Technol 54(11):89–92

    Google Scholar 

  • Moyer JC, Saravacos GD (1968) Scientific and technical aspects of fruit juice aroma recovery. In: Proceedings of 7th international fruit juice congress, Cannes France

    Google Scholar 

  • Mullin J (1993) Crystallization, 3rd edn. Butterworths, London

    Google Scholar 

  • Nagy S, Chen CS, Shaw PE (eds) (1993). Fruit juice processing technology. Agscience, Auburndale

    Google Scholar 

  • Nursten HE, Williams AA (1967) Fruit aromas: a survey of compounds identified. In: Chemistry and Industry (UK), March 25, pp 486–497

    Google Scholar 

  • Nyvlt J (1971) Industrial crystallization from solution. Butterworths, London

    Google Scholar 

  • Perry RH, Green D (1997) Chemical engineers’ handbook, 7th edn. McGraw-Hill, New York

    Google Scholar 

  • Prausnitz JM, Lichtenthaler RN, de Azevedo EG (1999) Molecular thermodynamics of fluid phase equilibria, 3rd edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Prospectus of companies: (a) GEA Food solutions, (b) DCE Inc., (c) Stork Food and Dairy Systems

    Google Scholar 

  • Randolph AD, Larson MA (1971) Theory of particulate processes. Academic, New York

    Google Scholar 

  • Reid RC, Prausnitz JM, Poling BE (1987) The properties of gases and liquids, 4th edn. McGraw-Hill, New York

    Google Scholar 

  • Robinson C, Gilliland E (1950) Elements of fractional distillation. McGraw-Hill, New York

    Google Scholar 

  • Roger NF, Turkot VA (1965) Designing distillation equipment for volatile fruit aromas. Food Technol 19(1):69–73

    CAS  Google Scholar 

  • Sancho MF, Rao MA (1993) Factors influencing aroma recovery and concentration. In: Downing DL (ed) Juice technology workshop. N.Y. State Agr. Exp. Station, Cornell University, Geneva, New York, pp 47–53. Special report no. 67

    Google Scholar 

  • Sancho MF, Rao MA, Downing DL (1997) Infinite dilution activity coefficients of apple juice aroma compounds. J Food Eng 34:145–158

    Article  Google Scholar 

  • Saravacos GD (1970) Volatility of wine aroma components in ethanol solutions. New York State Agricultural Experiment Station, Cornell University, Geneva, New York. Personal communication

    Google Scholar 

  • Saravacos GD (1974) Recovery of volatile aroma compounds during evaporation of fruit juices. In: Proceedings of 12th international congress agricultural and food industries. C.I.I.A, Paris

    Google Scholar 

  • Saravacos GD (1995) Mass transport properties of foods. In: Rao MA, Rizvi SSH (eds) Engineering properties of foods, 2nd edn. Marcel Dekker, New York, pp 169–221

    Google Scholar 

  • Saravacos GD, Maroulis ZB (2001) Transport properties of foods. Marcel Dekker, New York

    Google Scholar 

  • Saravacos GD, Moyer JC (1968) Volatility of some aroma compounds during vacuum-drying of fruit juices. Food Technol 22(5):89–95

    Google Scholar 

  • Saravacos GD, Moyer JC, Wooster GD (1969) Stripping of high-boiling aroma compounds from aqueous solutions. In: Paper presented at the 62nd annual meeting of the American Institute of Chemical Engineers (AIChE), Washington, DC

    Google Scholar 

  • Saravacos GD, Karathanos VT, Marinos-Kouris D (1990) Volatility of fruit aroma compounds in sugar solutions. In: Charalambous G (ed) Flavors and off-flavors. Elsevier, Amsterdam, pp 729–738

    Google Scholar 

  • Schormueller J (1966) Die Erhaltung der Lebensmittel. Ferdinand Enke Verlag, Stuttgart

    Google Scholar 

  • Schwartzberg HG (1980) Continuous countercurrent extraction in the food industry. Chem Eng Prog 76(4):67

    CAS  Google Scholar 

  • Schwartzberg HG (1987) Leaching. Organic materials. In: Rousseau RW (ed) Handbook of separation process technology. Wiley, New York, pp 540–577

    Google Scholar 

  • Schwartzberg HG, Chao RY (1982) Solute diffusivities in the leaching processes. Food Technol 36(2):73–86

    CAS  Google Scholar 

  • Schweitzer PA (ed) (1988) Handbook of separation techniques for chemical engineers, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Sherwood TK, Pigford RL, Wilke CR (1975) Mass transfer. McGraw-Hill, New York

    Google Scholar 

  • Sulc O (1984) Fruchtsaftkonzentrierung und Fruchtsaftaromaseparierung. Confructa Studien 28(3):258–318

    Google Scholar 

  • Treybal R (1980) Mass transfer operations, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  • Tscheuschner HD (1986) (Herausgeber)Lebensmitteltechnik. Steinkopff Verlag

    Google Scholar 

  • Van Smith JM, Nesh HC, Abbot NM (1996) Introduction to chemical engineering thermodynamics, 5th edn. McGraw-Hill, New York

    Google Scholar 

  • Van Winkle M (1967) Distillation. McGraw-Hill, New York

    Google Scholar 

  • Walas SM (1985) Phase equilibria in chemical engineering. Butterworths, London

    Google Scholar 

  • Walas S (1988) Chemical processing equipment. Butterworths, London

    Google Scholar 

  • Wankat PC (1990) Rate-controlled separations. Elsevier Science, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Saravacos, G., Kostaropoulos, A.E. (2016). Mass Transfer Equipment. In: Handbook of Food Processing Equipment. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-25020-5_11

Download citation

Publish with us

Policies and ethics