Skip to main content

GAMPP: Genetic Algorithm for UAV Mission Planning Problems

  • Conference paper
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 616))

Abstract

Due to the rapid development of the UAVs capabilities, these are being incorporated into many fields to perform increasingly complex tasks. Some of these tasks are becoming very important because they involve a high risk to the vehicle driver, such as detecting forest fires or rescue tasks, while using UAVs avoids risking human lives. Recent researches on artificial intelligence techniques applied to these systems provide a new degree of high-level autonomy of them. Mission planning for teams of UAVs can be defined as the planning process of locations to visit (waypoints) and the vehicle actions to do (loading/dropping a load, taking videos/pictures, acquiring information), typically over a time period. Currently, UAVs are controlled remotely by human operators from ground control stations, or use rudimentary systems. This paper presents a new Genetic Algorithm for solving Mission Planning Problems (GAMPP) using a cooperative team of UAVs. The fitness function has been designed combining several measures to look for optimal solutions minimizing the fuel consumption and the mission time (or makespan). The algorithm has been experimentally tested through several missions where its complexity is incrementally modified to measure the scalability of the problem. Experimental results show that the new algorithm is able to obtain good solutions improving the runtime of a previous approach based on CSPs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bello-Orgaz, G., Camacho. D.: Evolutionary clustering algorithm for community detection using graph-based information. In: IEEE Congress on Evolutionary Computation (CEC), 2014, IEEE, pp. 930–937 (2014)

    Google Scholar 

  2. Bin, X., Min, W., Yanming, L., Yu, F.: Improved genetic algorithm research for route optimization of logistic distribution. In: Proceedings of the 2010 International Conference on Computational and Information Sciences, ICCIS ’10, IEEE Computer Society, pp. 1087–1090, Washington (2010)

    Google Scholar 

  3. Doherty, P., Kvarnström, J., Heintz, F.: A temporal logic-based planning and execution monitoring framework for unmanned aircraft systems. Auton. Agents Multi-Agent Syst. 19(3), 332–377 (2009)

    Article  Google Scholar 

  4. Geng, L., Zhang, Y.F., Wang, J.J., Fuh, J.Y.H., Teo, S.H.: Cooperative task planning for multiple autonomous uavs with graph representation and genetic algorithm. In: 10th IEEE International Conference on Control and Automation (ICCA), IEEE, pp. 394–399 (2013)

    Google Scholar 

  5. Kendoul, F.: Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems. J. Field Robot. 29(2), 315–378 (2012)

    Article  Google Scholar 

  6. Menendez, H.D., Barrero, D.F., Camacho, D.: A co-evolutionary multi-objective approach for a K-adaptive graph-based clustering algorithm. In: IEEE Congress on Evolutionary Computation (CEC), IEEE, pp. 2724–2731 (2014)

    Google Scholar 

  7. Merino, L., Caballero, F., Martínez-de Dios, J.R., Ferruz, J., Ollero, A.: A cooperative perception system for multiple uavs: Application to automatic detection of forest fires. J. Field Robot. 23(3–4), 165–184 (2006)

    Google Scholar 

  8. Pereira, E., Bencatel, R., Correia, J., Félix, L., Gonçalves, G., Morgado, J., Sousa, J.: Unmanned air vehicles for coastal and environmental research. J. Coast. Res. pp. 1557–1561 (2009)

    Google Scholar 

  9. Ramírez-Atencia, C., Bello-Orgaz, G., R-Moreno, M.D., Camacho, D.: Branching to find feasible solutions in unmanned air vehicle mission planning. Intelligent Data Engineering and Automated Learning–IDEAL 2014, pp. 286–294. Springer, Switzerland (2014)

    Google Scholar 

  10. Soliday, S.W., et al.: A genetic algorithm model for mission planning and dynamic resource allocation of airborne sensors. In Proceedings of the1999 IRIS National Symposium on Sensor and Data Fusion. Citeseer (1999)

    Google Scholar 

  11. Wu, J., Zhou, G.: High-resolution planimetric mapping from uav video for quick-response to natural disaster. In IEEE International Conference on Geoscience and Remote Sensing Symposium, IGARSS, IEEE, pp. 3333–3336 (2006)

    Google Scholar 

Download references

Acknowledgments

This work is supported by Comunidad Autónoma de Madrid under project CIBERDINE S2013/ICE-3095, Spanish Ministry of Science and Education under Project Code TIN2014-56494-C4-4-P and Savier Project (Airbus Defence & Space, FUAM-076915). The authors would like to acknowledge the support obtained from Airbus Defence & Space, specially from Savier Open Innovation project members: José Insenser, César Castro and Gemma Blasco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gema Bello-Orgaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Bello-Orgaz, G., Ramirez-Atencia, C., Fradera-Gil, J., Camacho, D. (2016). GAMPP: Genetic Algorithm for UAV Mission Planning Problems. In: Novais, P., Camacho, D., Analide, C., El Fallah Seghrouchni, A., Badica, C. (eds) Intelligent Distributed Computing IX. Studies in Computational Intelligence, vol 616. Springer, Cham. https://doi.org/10.1007/978-3-319-25017-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25017-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25015-1

  • Online ISBN: 978-3-319-25017-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics