Advertisement

Curiouser Binding-Sites – In Membrane Transport Proteins

Chapter
  • 558 Downloads

Abstract

The idea of a semi-permeable-membrane as the barrier between cell interior and the surrounding space assumed that it is permeable to water but not to the solutes. The membrane surrounding a living cell is indeed permeable to water but it also contains protein entities, aquaporins, that contain pores of high specificity so that an individual water molecule H2O, can pass through it but not the hydrated proton, H3O+. This chapter covers the story of the discovery, structural studies and mechanism of action of the following membrane proteins: of aquaporins, of lac-permease and of voltage-dependent potassium channel.

Keywords

Potassium Channel Nobel Prize Semipermeable Membrane Purple Membrane Membrane Transport Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abramson J, Smirnova I, Kasho V, Verbner G, Kaback HR, Iwata S (2003) Structure and mechanism of the lactose permease of Escherichia coli. Science 301:610–615CrossRefPubMedGoogle Scholar
  2. Agre P, Kozono D (2003) Aquaporin water channels: molecular mechanisms for human diseases. FEBS Lett 555:72–78CrossRefPubMedGoogle Scholar
  3. Brooker RJ (1990) The lactose permease of Escherichia col. Res Microbiol 249:309–315CrossRefGoogle Scholar
  4. Brooker RJ, Wilson TH (1985) Isolation and nucleotide sequencing of lactose carrier mutants that transport maltose. Proc Natl Acad Sci U S A 82:3959–3963CrossRefPubMedPubMedCentralGoogle Scholar
  5. Büchel DE, Groneborn B, Müller-Hill B (1980) Sequence of the lactose permease gene. Nature 283:541–545CrossRefPubMedGoogle Scholar
  6. Davson H, Danielli JF (1943) The permeability of natural membranes. University Press, CambridgeGoogle Scholar
  7. de Groot BL, Engel A, Grubmüller H (2001) A refined structure of human aquaporin-1. FEBS Lett 504:206–211Google Scholar
  8. Editorial (1997) A biological water filter. Nat Struct Biol 4:245–246CrossRefGoogle Scholar
  9. Fox CF, Kennedy EP (1965) Specific labelling and partial purification of the M protein, a component of the b-galactoside transport system of Escherichia coli. Biochemistry 54:891–899Google Scholar
  10. Fu D, Libson A, Mierke IJ, Weitzman C, Nollert P, Krucinski J, Stroud RM (2000) Science 290:481–486CrossRefPubMedGoogle Scholar
  11. Giles J (2003) Channel hoppers land chemistry Nobel. Nature 425:651PubMedGoogle Scholar
  12. Henderson PJF (1990) Proton-linked sugar transport systems in bacteria. J Bioenerg Biomembr 22:525–569CrossRefPubMedGoogle Scholar
  13. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544CrossRefPubMedPubMedCentralGoogle Scholar
  14. Huang Y, Lemieux MJ, Song J, Auer M, Wang D-N (2003) Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301:616–620CrossRefPubMedGoogle Scholar
  15. Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, Mackinnon R et al (2003a) X-ray structure of a voltage-dependent K+ channel. Nature 423:33–41CrossRefPubMedGoogle Scholar
  16. Jiang Y, Ruta V, Chen J, Lee A, Mackinnon R (2003b) The principle of gating charge movement in a voltage dependent K+ channel. Nature 423:42–48CrossRefPubMedGoogle Scholar
  17. Kaback HR, Sahin-Toth M, Weinglass AB (2001) The Kamikaze approach to membrane transport. Nat Rev Mol Cell Biol 2:610–622CrossRefPubMedGoogle Scholar
  18. Keilin D (1925) On cytochrome, a respiratory pigment, common to animals, yeast, and higher plants. Proc R Soc B Biol Sci 98:312–339CrossRefGoogle Scholar
  19. Kennedy EP, Rumley MK, Armstrong JB (1974) Direct measurement of the binding of labelled sugars to the lactose permease M protein. J Biol Chem 249:33–37PubMedGoogle Scholar
  20. Li J, Tooth P (1987) Size and shape of the Escherichia coli lactose permease measured in filamentous arrays. Biochemistry 26:4816–4826CrossRefPubMedGoogle Scholar
  21. MacKinnon R (1991) Determination of the subunit stoichiometry of a voltage- activated potassium channel. Nature 350:232–235CrossRefPubMedGoogle Scholar
  22. MacKinnon R (2003) Potassium channels. FEBS Lett 555:62–65CrossRefPubMedGoogle Scholar
  23. Markgraf M, Bocklage H, Müller-Hill B (1985) A change of threonine266 to isoleucine in the lac permease of Escherichia coli diminishes the transport of lactose and increases the transport of maltose. Mol Gen Genet 198:473–475CrossRefPubMedGoogle Scholar
  24. Mindell JA (2008) The chloride channel’s appendix. Nat Struct Mol Biol 15:781–783CrossRefPubMedGoogle Scholar
  25. Mirza O, Guan L, Verner G, Iwata S, Kaback HR (2006) Structural evidence for induced fit and a mechanism for sugar/H+ symport in LacY. EMBO J 25:1177–1183CrossRefPubMedPubMedCentralGoogle Scholar
  26. Mitchell P (1973) The chemiosmotic theory of transport and metabolism. In: Mechanisms in Bioenergetics. Academic, New York, pp 177–201Google Scholar
  27. Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A (2000) Structural determinants of water permeation through aquaporin-1. Nature 407:599–605CrossRefPubMedGoogle Scholar
  28. Naftalin RJ, Green N, Cunningham P (2007) Lactose permease H+- lactose: symporter mechanical switch or Brownian Ratchet ? Biophys J 92:3474–3491CrossRefPubMedPubMedCentralGoogle Scholar
  29. Newman MJ, Wilson TH (1980) Solubilization and reconstitution of the lactose transport system from Escherichia coli. J Biol Chem 255:10583–10586PubMedGoogle Scholar
  30. Newman MJ, Foster DL, Wilson TH, Kaback HR (1981) Purification and reconstitution of functional lactose carrier from Escherichia coli. J Biol Chem 256:11804–11808PubMedGoogle Scholar
  31. Nikaido H, Saier MHJ (1992) Transport proteins in bacteria: common themes in their design. Science 258:936–942CrossRefPubMedGoogle Scholar
  32. Preston GM, Carroll TP, Guggino WB, Agre P (1992) Science 256:385–387CrossRefPubMedGoogle Scholar
  33. Racker E, Stoeckenius W (1974) Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation. J Biol Chem 249:662–663PubMedGoogle Scholar
  34. Rickenberg HV, Cohen GN, Buttin G, Monod J (1956) Ann Inst Pasteur 91:829Google Scholar
  35. Saier MHJ (2002) Families of transporters and their classification. In: Transmembrane transporters. Wiley Liss, New York, pp 1–17Google Scholar
  36. Sigworth FJ (2003) Structural biology: life’s transistors. Nature 423:21–22CrossRefPubMedGoogle Scholar
  37. Sistrom WR (1958) On the physical state of the intracellularly accumulated substrates of β-galactoside-permease in Escherichia coli. Biochim Biophys Acta 29:579–587CrossRefPubMedGoogle Scholar
  38. Slater EC (2003a) Keilin, cytochrome, and the respiratory chain. J Biol Chem 278:16455–16461CrossRefPubMedGoogle Scholar
  39. Slater EC (2003b) Metabolic gardening. Nature 422:816–817CrossRefGoogle Scholar
  40. Sui H, Han B-G, Lee JK, Walian P, Jap BK (2001) Structural basis of water-specific transport through the AQP1 water channel. Nature 414:872–877CrossRefPubMedGoogle Scholar
  41. West IC, Mitchell P (1973) Stoichiometry of lactose-H+ symport across the plasma membrane of Escherichia coli. Biochem J 132:587–592CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.CaesareaIsrael

Personalised recommendations