Skip to main content

Curiouser Binding-Sites – In Membrane Transport Proteins

  • Chapter
  • First Online:
Book cover The Discreet Charm of Protein Binding Sites
  • 605 Accesses

Abstract

The idea of a semi-permeable-membrane as the barrier between cell interior and the surrounding space assumed that it is permeable to water but not to the solutes. The membrane surrounding a living cell is indeed permeable to water but it also contains protein entities, aquaporins, that contain pores of high specificity so that an individual water molecule H2O, can pass through it but not the hydrated proton, H3O+. This chapter covers the story of the discovery, structural studies and mechanism of action of the following membrane proteins: of aquaporins, of lac-permease and of voltage-dependent potassium channel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramson J, Smirnova I, Kasho V, Verbner G, Kaback HR, Iwata S (2003) Structure and mechanism of the lactose permease of Escherichia coli. Science 301:610–615

    Article  CAS  PubMed  Google Scholar 

  • Agre P, Kozono D (2003) Aquaporin water channels: molecular mechanisms for human diseases. FEBS Lett 555:72–78

    Article  CAS  PubMed  Google Scholar 

  • Brooker RJ (1990) The lactose permease of Escherichia col. Res Microbiol 249:309–315

    Article  Google Scholar 

  • Brooker RJ, Wilson TH (1985) Isolation and nucleotide sequencing of lactose carrier mutants that transport maltose. Proc Natl Acad Sci U S A 82:3959–3963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Büchel DE, Groneborn B, Müller-Hill B (1980) Sequence of the lactose permease gene. Nature 283:541–545

    Article  PubMed  Google Scholar 

  • Davson H, Danielli JF (1943) The permeability of natural membranes. University Press, Cambridge

    Google Scholar 

  • de Groot BL, Engel A, Grubmüller H (2001) A refined structure of human aquaporin-1. FEBS Lett 504:206–211

    Google Scholar 

  • Editorial (1997) A biological water filter. Nat Struct Biol 4:245–246

    Article  Google Scholar 

  • Fox CF, Kennedy EP (1965) Specific labelling and partial purification of the M protein, a component of the b-galactoside transport system of Escherichia coli. Biochemistry 54:891–899

    CAS  Google Scholar 

  • Fu D, Libson A, Mierke IJ, Weitzman C, Nollert P, Krucinski J, Stroud RM (2000) Science 290:481–486

    Article  CAS  PubMed  Google Scholar 

  • Giles J (2003) Channel hoppers land chemistry Nobel. Nature 425:651

    CAS  PubMed  Google Scholar 

  • Henderson PJF (1990) Proton-linked sugar transport systems in bacteria. J Bioenerg Biomembr 22:525–569

    Article  CAS  PubMed  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Lemieux MJ, Song J, Auer M, Wang D-N (2003) Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301:616–620

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, Mackinnon R et al (2003a) X-ray structure of a voltage-dependent K+ channel. Nature 423:33–41

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Ruta V, Chen J, Lee A, Mackinnon R (2003b) The principle of gating charge movement in a voltage dependent K+ channel. Nature 423:42–48

    Article  CAS  PubMed  Google Scholar 

  • Kaback HR, Sahin-Toth M, Weinglass AB (2001) The Kamikaze approach to membrane transport. Nat Rev Mol Cell Biol 2:610–622

    Article  CAS  PubMed  Google Scholar 

  • Keilin D (1925) On cytochrome, a respiratory pigment, common to animals, yeast, and higher plants. Proc R Soc B Biol Sci 98:312–339

    Article  Google Scholar 

  • Kennedy EP, Rumley MK, Armstrong JB (1974) Direct measurement of the binding of labelled sugars to the lactose permease M protein. J Biol Chem 249:33–37

    CAS  PubMed  Google Scholar 

  • Li J, Tooth P (1987) Size and shape of the Escherichia coli lactose permease measured in filamentous arrays. Biochemistry 26:4816–4826

    Article  CAS  PubMed  Google Scholar 

  • MacKinnon R (1991) Determination of the subunit stoichiometry of a voltage- activated potassium channel. Nature 350:232–235

    Article  CAS  PubMed  Google Scholar 

  • MacKinnon R (2003) Potassium channels. FEBS Lett 555:62–65

    Article  CAS  PubMed  Google Scholar 

  • Markgraf M, Bocklage H, Müller-Hill B (1985) A change of threonine266 to isoleucine in the lac permease of Escherichia coli diminishes the transport of lactose and increases the transport of maltose. Mol Gen Genet 198:473–475

    Article  CAS  PubMed  Google Scholar 

  • Mindell JA (2008) The chloride channel’s appendix. Nat Struct Mol Biol 15:781–783

    Article  CAS  PubMed  Google Scholar 

  • Mirza O, Guan L, Verner G, Iwata S, Kaback HR (2006) Structural evidence for induced fit and a mechanism for sugar/H+ symport in LacY. EMBO J 25:1177–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell P (1973) The chemiosmotic theory of transport and metabolism. In: Mechanisms in Bioenergetics. Academic, New York, pp 177–201

    Google Scholar 

  • Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A (2000) Structural determinants of water permeation through aquaporin-1. Nature 407:599–605

    Article  CAS  PubMed  Google Scholar 

  • Naftalin RJ, Green N, Cunningham P (2007) Lactose permease H+- lactose: symporter mechanical switch or Brownian Ratchet ? Biophys J 92:3474–3491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman MJ, Wilson TH (1980) Solubilization and reconstitution of the lactose transport system from Escherichia coli. J Biol Chem 255:10583–10586

    CAS  PubMed  Google Scholar 

  • Newman MJ, Foster DL, Wilson TH, Kaback HR (1981) Purification and reconstitution of functional lactose carrier from Escherichia coli. J Biol Chem 256:11804–11808

    CAS  PubMed  Google Scholar 

  • Nikaido H, Saier MHJ (1992) Transport proteins in bacteria: common themes in their design. Science 258:936–942

    Article  CAS  PubMed  Google Scholar 

  • Preston GM, Carroll TP, Guggino WB, Agre P (1992) Science 256:385–387

    Article  CAS  PubMed  Google Scholar 

  • Racker E, Stoeckenius W (1974) Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation. J Biol Chem 249:662–663

    CAS  PubMed  Google Scholar 

  • Rickenberg HV, Cohen GN, Buttin G, Monod J (1956) Ann Inst Pasteur 91:829

    CAS  Google Scholar 

  • Saier MHJ (2002) Families of transporters and their classification. In: Transmembrane transporters. Wiley Liss, New York, pp 1–17

    Google Scholar 

  • Sigworth FJ (2003) Structural biology: life’s transistors. Nature 423:21–22

    Article  CAS  PubMed  Google Scholar 

  • Sistrom WR (1958) On the physical state of the intracellularly accumulated substrates of β-galactoside-permease in Escherichia coli. Biochim Biophys Acta 29:579–587

    Article  CAS  PubMed  Google Scholar 

  • Slater EC (2003a) Keilin, cytochrome, and the respiratory chain. J Biol Chem 278:16455–16461

    Article  CAS  PubMed  Google Scholar 

  • Slater EC (2003b) Metabolic gardening. Nature 422:816–817

    Article  CAS  Google Scholar 

  • Sui H, Han B-G, Lee JK, Walian P, Jap BK (2001) Structural basis of water-specific transport through the AQP1 water channel. Nature 414:872–877

    Article  CAS  PubMed  Google Scholar 

  • West IC, Mitchell P (1973) Stoichiometry of lactose-H+ symport across the plasma membrane of Escherichia coli. Biochem J 132:587–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yariv, J. (2016). Curiouser Binding-Sites – In Membrane Transport Proteins. In: The Discreet Charm of Protein Binding Sites. Springer, Cham. https://doi.org/10.1007/978-3-319-24996-4_5

Download citation

Publish with us

Policies and ethics