Skip to main content

Introduction

  • Chapter
  • First Online:
The Discreet Charm of Protein Binding Sites

Abstract

This introductory chapter deals with protein structure and its synthesis The 20 α-amino-acids that compose proteins are all of the L-configuration except for glycine that is optically inactive. That a protein is a chemically pure entity was proven by Sumner in crystals of the enzyme urease. A protein molecule is defined by the size/weight of a linear polypeptide that composes it. A fundamental method of structure solution of molecules is X-ray diffraction. When applied to peptides by Pauling and Corey it supplied information about the distances between atoms and showed that the peptide bond is planar. First proteins whose structure was solved were myoglobin and haemoglobin followed by the enzymes lysozyme and chymotrypsin. The bottleneck in determining a protein structure from its diffraction intensity maxima was lack of knowledge of the phase of diffracted X-rays. This was surmounted by various techniques that go under names like MIR, MAD, SIRAS and others. Solution of a protein structure involves calculation of an enormous quantity of numerical data in the refinement and production of the electron density of the molecule. The resolution to which structure of proteins has been solved, around 2 Å, bears no comparison to 0.01 Å obtained for small molecules. All these calculations demand extensive use of computer programs. Binding-sites endow proteins with unique selectivity to small molecules and are physiologically important. The forces responsible for the binding of small molecules to binding-sites are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahams SC, Robertson JM, White JG (1949) The crystal and molecular structure of naphthalene. II. Structure investigation by the triple Fourier series method. Acta Crystallogr 2:238–244

    Article  CAS  Google Scholar 

  • Ball P (2003) Molecules of life come in waves. Nature (Science Update, Sept 6)

    Google Scholar 

  • Bernal JD (1958) Structure arrangements of macromolecules. Discuss Faraday Soc 25:7–18

    Article  Google Scholar 

  • Blake CC, Koenig DF, Mair GA, North AC, Phillips DC, Sarma VR (1965) Structure of hen egg-white lysozyme. A three-dimensional Fourier synthesis at 2 Å resolution. Nature 206:757–761

    Article  CAS  PubMed  Google Scholar 

  • Blow D (2005) Outline of crystallography for biologists. Oxford University Press, New York, p 214

    Google Scholar 

  • Blow DM, Birktoft JJ, Hartley BS (1969) Role of a buried acid group in the mechanism of action of chymotrypsin. Nature 221:337–340

    Article  CAS  PubMed  Google Scholar 

  • Bracewell RN (1989) The Fourier Transform. Sci Am:62–69

    Google Scholar 

  • Corey RB (1938) The crystal structure of diketopiperazine. Proc Natl Acad Sci U S A 60:1598–1604

    CAS  Google Scholar 

  • Dickerson RE, Geis I (1969) The structure and action of proteins. Harper & Row, Publishers, New York

    Google Scholar 

  • Doerr A (2014) A method ahead of its time. Nature, Milestone 13/Nature Milestones/Crystallography, August 2014

    Google Scholar 

  • Frolow F, Kalb AJ, Yariv J (1993) Location of haem in bacterioferritin of E. coli. Acta Crystallogr D 49:597–600

    Article  CAS  PubMed  Google Scholar 

  • Goffeau A, Nakai K, Slonimski P, Risler J-P (1993) The membrane proteins encoded by yeast chromosome III genes. FEBS Lett 325:112–117

    Article  CAS  PubMed  Google Scholar 

  • Hackermüller L, Uttenthaler S, Hornberger K, Reiger E, Brezger B, Zeilinger A, Arndt M (2003) Wave nature of biomolecules and florofullerenes. Phys Rev Lett 91:090408 (1–4)

    Google Scholar 

  • Henderson R (2013) Ion channel seen by electron microscopy. Nature 504:93–94

    Article  CAS  PubMed  Google Scholar 

  • Hendrickson WA, Horton JR, LeMaster DM (1990) Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three-dimensional structure. EMBO J 9:1665–1672

    CAS  PubMed  PubMed Central  Google Scholar 

  • James RW (1953) X-Ray crystallography, 5th edn. Methuen & Co. Ltd, London, p 93

    Google Scholar 

  • Karle J (1989) Macromolecular structure from anomalous dispersion. Phys Today 42:22–29

    Google Scholar 

  • Kemp M (1998) Kendrew constructs; Geis gazes. Nature 396:525

    Article  CAS  PubMed  Google Scholar 

  • Kendrew JC (1961) The three-dimensional structure of a protein molecule. Sci Am 205:96–110

    Article  CAS  PubMed  Google Scholar 

  • Kendrew JC (1966) The thread of life: an introduction to molecular biology, figure 9. G. Bell and Sons Ltd, London

    Google Scholar 

  • Liao M, Cao E, Julius D, Cheng Y (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504:107–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • London F (1943) Intermolecular attraction between macromolecules. Surf Chem 21:141–149

    Google Scholar 

  • Löwe D (2010) Molecular modellings $10 million come back? Nature 7 May, pp 1–3 (online)

    Google Scholar 

  • Magagno E, Honig B, Chasin L (2014) Cyrus Levinthal 1922–1990. Biographical Memoirs, National Academy of Sciences

    Google Scholar 

  • Matthews BW, Sigler PB, Henderson R, Blow DM (1967) Three-dimensional structure of tosyl-a-chymotrypsin. Nature 214:652–656

    Article  CAS  PubMed  Google Scholar 

  • Paterlini M (2008) A protein ghost etched in glass. Nature 452:155

    Article  CAS  Google Scholar 

  • Pauling L (1993) How my interest in proteins developed. Protein Sci 2:1060–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauling L, Corey RB, Branson HR (1951) The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain. Proc Natl Acad Sci U S A 37:205–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penrose R (1994) Shadows of the mind. Oxford University Press, Oxford

    Google Scholar 

  • Perutz MF (1987) I wish I’d made you angry earlier. Scientist 1:9

    Google Scholar 

  • Richards FM (1958) On the enzymic activity of subtilisin-modified ribonuclease. Proc Natl Acad Sci U S A 44:162–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards FM (1997) Whatever happened to the Fun? An autobiographical investigation. Annu Rev Biophys Biomol Struct 26:1–25

    Article  CAS  PubMed  Google Scholar 

  • Robertson JM (1938) X-Ray analysis and application of Fourier series methods to molecular structures. Rep Prog Phys 4:332–367

    Article  Google Scholar 

  • Rossmann MG, Blow DM (1962) The detection of sub-units within the crystallographic asymmetric unit. Acta Crystallogr 15:24–31

    Article  CAS  Google Scholar 

  • Schiltz M, Fourme R, Prangé T (2003) Use of noble gases xenon and krypton as heavy atoms in protein structure determination. Methods Enzymol 374:83–119

    Article  CAS  PubMed  Google Scholar 

  • Schoeneborn BP, Watson HC, Kendrew JC (1965) Binding of xenon to sperm whale myoglobin. Nature 207:28–30

    Article  Google Scholar 

  • Smith JMA, Ford GC, Harrison PM, Yariv J, Kalb (Gilboa) AJ (1989) Molecular size and symmetry of bacterioferritin of Escherichia coli: X-ray crystallographic characterization of four crystal forms. J Mol Biol 205:465–467

    Article  CAS  PubMed  Google Scholar 

  • Sumner JB (1946) The chemical nature of enzymes. Nobel Lecture, 12 December 1946, pp 114–123

    Google Scholar 

  • Swindells MB, Orengo CA, Jones DT, Hutchinson EG, Thornton JM (1998) Contemporary approaches to protein structure classification. BioEssays 20:884–891

    Article  CAS  PubMed  Google Scholar 

  • Vijayan M (2001) Obituary: G. N. Ramachandran (1922–2001). Nature 411:544

    Article  CAS  PubMed  Google Scholar 

  • Yariv J, Kalb AJ, Sperling R, Bauminger ER, Cohen SG, Ofer S (1981) The composition and the structure of bacterioferritin of Escherichia coli. Biochem J 197:171–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yariv, J. (2016). Introduction. In: The Discreet Charm of Protein Binding Sites. Springer, Cham. https://doi.org/10.1007/978-3-319-24996-4_1

Download citation

Publish with us

Policies and ethics