Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 229))

Abstract

Plasmonic nanoparticles (Au, Ag, Cu) have attracted increasing attentions due to their excellent optical, chemical and physical characters, especially localized surface plasmon resonance (LSPR) property. Plasmonic nanoparticles have been widely applied in the fields of catalysis, energy sources and various sensors. Notably, the development of optical techniques achieved the investigation of single plasmonic nanoparticles including dark-field microscopy, differential interference contrast (DIC) microscopy and surface plasmon resonance imaging, etc. The single-nanoparticle detection eliminates the average effect compared with bulk system and improves detection sensitivity dramatically, even to single molecule level. Thus, in this chapter, we focus on the determination on a single nanoparticle mainly based on plasmon resonance scattering spectroscopy under dark-field microscopy. The points of morphology and composition modulation, inter-particle coupling, plasmon resonance energy transfer and opto-electrochemical detection are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. H. Chen, L. Shao, Q. Li, J. Wang, Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 42, 2679–2724 (2013)

    CAS  Google Scholar 

  2. Y. Li, C. Jing, L. Zhang, Y.-T. Long, Resonance scattering particles as biological nanosensors in vitro and in vivo. Chem. Soc. Rev. 41, 632–642 (2012)

    CAS  Google Scholar 

  3. C. Jing, Y.-T. Long, Localized Surface Plasmon Resonance Based Nanobiosensors (Springer, London, 2014)

    Google Scholar 

  4. B. Sepúlveda, P.C. Angelomé, L.M. Lechuga, L.M. Liz-Marzán, LSPR-based nanobiosensors. Nano Today 4, 244–251 (2009)

    Google Scholar 

  5. S. Eustis, M.A. El-Sayed, Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 35, 209–217 (2006)

    CAS  Google Scholar 

  6. S. Schultz, D.R. Smith, J.J. Mock, D.A. Schultz, Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc. Natl. Acad. Sci. U.S.A. 97, 996–1001 (2000)

    CAS  Google Scholar 

  7. C. Sonnichsen, S. Geier, N.E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J.R. Krenn, F.R. Aussenegg, V.Z.H. Chan, J.P. Spatz, M. Moller, Spectroscopy of single metallic nanoparticles using total internal reflection microscopy. Appl. Phys. Lett. 77, 2949–2951 (2000)

    CAS  Google Scholar 

  8. H.D. Song, I. Choi, Y.I. Yang, S. Hong, S. Lee, T. Kang, J. Yi, Picomolar selective detection of mercuric ion (Hg2+) using a functionalized single plasmonic gold nanoparticle. Nanotechnology 21, 145501 (2010)

    Google Scholar 

  9. A. Wax, K. Sokolov, Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles. Laser Photon. Rev. 3, 146–158 (2009)

    CAS  Google Scholar 

  10. C. Jing, L. Shi, X.Y. Liu, Y.T. Long, A single gold nanorod as a plasmon resonance energy transfer based nanosensor for high-sensitivity Cu(II) detection. Analyst 139, 6435–6439 (2014)

    CAS  Google Scholar 

  11. W. Haiss, N.T.K. Thanh, J. Aveyard, D.G. Fernig, Determination of size and concentration of gold nanoparticles from UV–vis spectra. Anal. Chem. 79, 4215–4221 (2007)

    CAS  Google Scholar 

  12. W. Jiang, J.T. Rutka, W.C. Chan, Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 3, 145–150 (2008)

    Google Scholar 

  13. C. Jing, Z. Gu, Y.L. Ying, D.W. Li, L. Zhang, Y.T. Long, Chrominance to dimension: a real-time method for measuring the size of single gold nanoparticles. Anal. Chem. 84, 4284–4291 (2012)

    CAS  Google Scholar 

  14. Z. Gu, C. Jing, Y.L. Ying, P.G. He, Y.T. Long, In situ high throughput scattering light analysis of single plasmonic nanoparticles in living cells. Theranostics 5, 188–195 (2015)

    Google Scholar 

  15. C.T. Campbell, PHYSICS: the active site in nanoparticle gold catalysis. Science 306, 234–235 (2004)

    CAS  Google Scholar 

  16. I.L. Buurmans, B.M. Weckhuysen, Heterogeneities of individual catalyst particles in space and time as monitored by spectroscopy. Nat. Chem. 4, 873–886 (2012)

    CAS  Google Scholar 

  17. Y. Wu, P. Jiang, M. Jiang, T.-W. Wang, C.-F. Guo, S.-S. Xie, Z.-L. Wang, The shape evolution of gold seeds and gold@silver core–shell nanostructures. Nanotechnology 20, 305602 (2009)

    Google Scholar 

  18. X. Zheng, Q. Liu, C. Jing, Y. Li, D. Li, W. Luo, Y. Wen, Y. He, Q. Huang, Y.-T. Long, C. Fan, Catalytic gold nanoparticles for nanoplasmonic detection of DNA hybridization. Angew. Chem. Int. Ed. 50, 11994–11998 (2011)

    CAS  Google Scholar 

  19. Q. Liu, C. Jing, X. Zheng, Z. Gu, D. Li, D.-W. Li, Q. Huang, Y.-T. Long, C. Fan, Nanoplasmonic detection of adenosine triphosphate by aptamer regulated self-catalytic growth of single gold nanoparticles. Chem. Commun. 48, 9574–9576 (2012)

    CAS  Google Scholar 

  20. J. Becker, A. Trügler, A. Jakab, U. Hohenester, C. Sönnichsen, The optimal aspect ratio of gold nanorods for plasmonic bio-sensing. Plasmonics 5, 161–167 (2010)

    CAS  Google Scholar 

  21. U. Hohenester, J. Krenn, Surface plasmon resonances of single and coupled metallic nanoparticles: a boundary integral method approach. Phys. Rev. B 72, 195429 (2005)

    Google Scholar 

  22. E. Ringe, J. Zhang, M.R. Langille, C.A. Mirkin, L.D. Marks, R.P. Van Duyne, Correlating the structure and localized surface plasmon resonance of single silver right bipyramids. Nanotechnology 23, 444005 (2012)

    Google Scholar 

  23. R. Jin, Photoinduced conversion of silver nanospheres to nanoprisms. Science 294, 1901–1903 (2001)

    CAS  Google Scholar 

  24. T. Xie, C. Jing, W. Ma, Z. Ding, A.J. Gross, Y.T. Long, Real-time monitoring for the morphological variations of single gold nanorods. Nanoscale 7, 511–517 (2015)

    CAS  Google Scholar 

  25. L. Zhang, Y. Li, D.-W. Li, C. Jing, X. Chen, M. Lv, Q. Huang, Y.-T. Long, I. Willner, Single gold nanoparticles as real-time optical probes for the detection of NADH-dependent intracellular metabolic enzymatic pathways. Angew. Chem. Int. Ed. 50, 6789–6792 (2011)

    CAS  Google Scholar 

  26. M.S. Shore, J. Wang, A.C. Johnston-Peck, A.L. Oldenburg, J.B. Tracy, Synthesis of Au(Core)/Ag(Shell) nanoparticles and their conversion to AuAg alloy nanoparticles. Small 7, 230–234 (2011)

    CAS  Google Scholar 

  27. B. Xiong, R. Zhou, J. Hao, Y. Jia, Y. He, E.S. Yeung, Highly sensitive sulphide mapping in live cells by kinetic spectral analysis of single Au–Ag core-shell nanoparticles. Nat. Commun. 4, 1708 (2013)

    Google Scholar 

  28. Z. Chen, J. Li, X. Chen, J. Cao, J. Zhang, Q. Min, J.J. Zhu, Single gold@silver nanoprobes for real-time tracing the entire autophagy process at single-cell level. J. Am. Chem. Soc. 137, 1903–1908 (2015)

    CAS  Google Scholar 

  29. C. Sönnichsen, B.M. Reinhard, J. Liphardt, A.P. Alivisatos, A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat. Biotechnol. 23, 741–745 (2005)

    Google Scholar 

  30. D. Aili, R. Selegård, L. Baltzer, K. Enander, B. Liedberg, Colorimetric protein sensing by controlled assembly of gold nanoparticles functionalized with synthetic receptors. Small 5, 2445–2452 (2009)

    CAS  Google Scholar 

  31. Y.W. Jun, S. Sheikholeslami, D.R. Hostetter, C. Tajon, C.S. Craik, A.P. Alivisatos, Continuous imaging of plasmon rulers in live cells reveals early-stage caspase-3 activation at the single-molecule level. Proc. Natl. Acad. Sci. U.S.A. 106, 17735–17740 (2009)

    CAS  Google Scholar 

  32. K. Li, W. Qin, F. Li, X. Zhao, B. Jiang, K. Wang, S. Deng, C. Fan, D. Li, Nanoplasmonic imaging of latent fingerprints and identification of cocaine. Angew. Chem. Int. Ed. 52, 11542–11545 (2013)

    CAS  Google Scholar 

  33. L. Shi, C. Jing, W. Ma, D.W. Li, J.E. Halls, F. Marken, Y.T. Long, Plasmon resonance scattering spectroscopy at the single-nanoparticle level: real-time monitoring of a click reaction. Angew. Chem. Int. Ed. 52, 6011–6014 (2013)

    CAS  Google Scholar 

  34. G.L. Liu, Y.-T. Long, Y. Choi, T. Kang, L.P. Lee, Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer. Nat. Methods 4, 1015–1017 (2007)

    CAS  Google Scholar 

  35. Y. Choi, T. Kang, L.P. Lee, Plasmon resonance energy transfer (PRET)-based molecular imaging of cytochrome c in living cells. Nano Lett. 9, 85–90 (2008)

    Google Scholar 

  36. W.G. Qu, B. Deng, S.L. Zhong, H.Y. Shi, S.S. Wang, A.W. Xu, Plasmonic resonance energy transfer-based nanospectroscopy for sensitive and selective detection of 2,4,6-trinitrotoluene (TNT). Chem. Commun. 47, 1237–1239 (2011)

    CAS  Google Scholar 

  37. Y. Choi, Y. Park, T. Kang, L.P. Lee, Selective and sensitive detection of metal ions by plasmonic resonance energy transfer-based nanospectroscopy. Nat. Nanotechnol. 4, 742–746 (2009)

    CAS  Google Scholar 

  38. L. Shi, C. Jing, Z. Gu, Y.-T. Long, Brightening gold nanoparticles: new sensing approach based on plasmon resonance energy transfer. Sci. Rep. 5, 10142 (2015)

    CAS  Google Scholar 

  39. M. Turner, V.B. Golovko, O.P.H. Vaughan, P. Abdulkin, A. Berenguer-Murcia, M.S. Tikhov, B.F.G. Johnson, R.M. Lambert, Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 454, 981–983 (2008)

    CAS  Google Scholar 

  40. A. de la Escosura-Muñiz, A. Ambrosi, A. Merkoçi, Electrochemical analysis with nanoparticle-based biosystems. TrAC-Trend Anal. Chem. 27, 568–584 (2008)

    Google Scholar 

  41. J.M. Pingarrón, P. Yáñez-Sedeño, A. González-Cortés, Gold nanoparticle-based electrochemical biosensors. Electrochim. Acta 53, 5848–5866 (2008)

    Google Scholar 

  42. M. Brust, G.J. Gordillo, Electrocatalytic hydrogen redox chemistry on gold nanoparticles. J. Am. Chem. Soc. 134, 3318–3321 (2012)

    CAS  Google Scholar 

  43. X. Shan, I. Díez-Pérez, L. Wang, P. Wiktor, Y. Gu, L. Zhang, W. Wang, J. Lu, S. Wang, Q. Gong, J. Li, N. Tao, Imaging the electrocatalytic activity of single nanoparticles. Nat. Nanotechnol. 7, 668–672 (2012)

    CAS  Google Scholar 

  44. X. Shan, U. Patel, S. Wang, R. Iglesias, N. Tao, Imaging local electrochemical current via surface plasmon resonance. Science 327, 1363–1366 (2010)

    CAS  Google Scholar 

  45. C. Novo, A.M. Funston, P. Mulvaney, Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nat. Nanotechnol. 3, 598–602 (2008)

    CAS  Google Scholar 

  46. C. Novo, A.M. Funston, A.K. Gooding, P. Mulvaney, Electrochemical charging of single gold nanorods. J. Am. Chem. Soc. 131, 14664–14666 (2009)

    CAS  Google Scholar 

  47. P. Mulvaney, J. Pérez-Juste, M. Giersig, L.M. Liz-Marzán, C. Pecharromán, Drastic surface plasmon mode shifts in gold nanorods due to electron charging. Plasmonics 1, 61–66 (2006)

    CAS  Google Scholar 

  48. C. Novo, P. Mulvaney, Charge-induced Rayleigh instabilities in small gold rods. Nano Lett. 7, 520–524 (2007)

    CAS  Google Scholar 

  49. S.K. Dondapati, M. Ludemann, R. Muller, S. Schwieger, A. Schwemer, B. Handel, D. Kwiatkowski, M. Djiango, E. Runge, T.A. Klar, Voltage-induced adsorbate damping of single gold nanorod plasmons in aqueous solution. Nano Lett. 12, 1247–1252 (2012)

    CAS  Google Scholar 

  50. C.M. Hill, S.L. Pan, A dark-field scattering spectroelectrochemical technique for tracking the electrodeposition of single silver nanoparticles. J. Am. Chem. Soc. 135, 17250–17253 (2013)

    CAS  Google Scholar 

  51. Y. Fang, W. Wang, X. Wo, Y. Luo, S. Yin, Y. Wang, X. Shan, N. Tao, Plasmonic imaging of electrochemical oxidation of single nanoparticles. J. Am. Chem. Soc. 136, 12584–12587 (2014)

    CAS  Google Scholar 

  52. C. Jing, F.J. Rawson, H. Zhou, X. Shi, W.H. Li, D.W. Li, Y.T. Long, New insights into electrocatalysis based on plasmon resonance for the real-time monitoring of catalytic events on single gold nanorods. Anal. Chem. 86, 5513–5518 (2014)

    CAS  Google Scholar 

  53. C.P. Byers, B.S. Hoener, W.S. Chang, M. Yorulmaz, S. Link, C.F. Landes, Single-particle spectroscopy reveals heterogeneity in electrochemical tuning of the localized surface plasmon. J. Phys. Chem. B 118, 14047–14055 (2014)

    CAS  Google Scholar 

  54. H. Zhou, Q. Liu, F.J. Rawson, W. Ma, D.W. Li, D. Li, Y.T. Long, Optical monitoring of faradaic reaction using single plasmon-resonant nanorods functionalized with graphene. Chem. Commun. 51, 3223–3226 (2015)

    CAS  Google Scholar 

  55. L.-X. Qin, Y. Li, D.-W. Li, C. Jing, B.-Q. Chen, W. Ma, A. Heyman, O. Shoseyov, I. Willner, H. Tian, Y.-T. Long, Electrodeposition of single-metal nanoparticles on stable protein 1 membranes: application of plasmonic sensing by single nanoparticles. Angew. Chem. Int. Ed. 51, 140–144 (2012)

    CAS  Google Scholar 

  56. L.-X. Qin, C. Jing, Y. Li, D.-W. Li, Y.-T. Long, Real-time monitoring of the aging of single plasmonic copper nanoparticles. Chem. Commun. 48, 1511–1513 (2012)

    CAS  Google Scholar 

  57. Y. Ge, B. Kang, Surface plasmon resonance scattering and absorption of biofunctionalized gold nanoparticles for targeted cancer imaging and laser therapy. Sci. China Technol. SC. 54, 2358–2362 (2011)

    CAS  Google Scholar 

  58. L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, B. Lounis, Single metallic nanoparticle imaging for protein detection in cells. Proc. Natl. Acad. Sci. U.S.A. 100, 11350–11355 (2003)

    CAS  Google Scholar 

  59. K.A. Willets, R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007)

    CAS  Google Scholar 

  60. E.E. Connor, J. Mwamuka, A. Gole, C.J. Murphy, M.D. Wyatt, Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1, 325–327 (2005)

    CAS  Google Scholar 

  61. P.K. Jain, X. Huang, I.H. El-Sayed, M.A. El-Sayed, Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2, 107–118 (2007)

    CAS  Google Scholar 

  62. J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, R.P. Van Duyne, Biosensing with plasmonics nanosensors. Nat. Mater. 7, 442–453 (2008)

    CAS  Google Scholar 

  63. E. Cohen-Hoshen, G.W. Bryant, I. Pinkas, J. Sperling, I. Bar-Joseph, Exciton-plasmon interactions in quantum dot-gold nanoparticle structures. Nano Lett. 12, 4260–4264 (2012)

    CAS  Google Scholar 

  64. K.V. Kong, Z. Lam, W.D. Goh, W.K. Leong, M. Olivo, Metal carbonyl-gold nanoparticle conjugates for live-cell SERS imaging. Angew. Chem. Int. Ed. 51, 9796–9799 (2012)

    CAS  Google Scholar 

  65. L.V. Brown, X. Yang, K. Zhao, B.Y. Zheng, P. Nordlander, N.J. Halas, Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA). Nano Lett. 15, 1272–1280 (2015)

    CAS  Google Scholar 

  66. M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, B. Dagens, Giant coupling effect between metal nanoparticle chain and optical waveguide. Nano Lett. 12, 1032–1037 (2012)

    Google Scholar 

  67. M.A. Mahmoud, W. Qian, M.A. El-Sayed, Following charge separation on the nanoscale in Cu2O–Au nanoframe hollow nanoparticles. Nano Lett. 11, 3285–3289 (2011)

    CAS  Google Scholar 

  68. W.-W. Zhao, C.-Y. Tian, J.-J. Xu, H.-Y. Chen, The coupling of localized surface plasmon resonance-based photoelectrochemistry and nanoparticle size effect: towards novel plasmonic photoelectrochemical biosensing. Chem. Commun. 48, 895–897 (2012)

    CAS  Google Scholar 

  69. K.R. Catchpole, A. Polman, Plasmonic solar cells. Opt. Express 16, 21793–21800 (2008)

    CAS  Google Scholar 

  70. B. Sahoo, M.N. Hopkinson, F. Glorius, Combining gold and photoredox catalysis: visible light-mediated oxy- and aminoarylation of alkenes. J. Am. Chem. Soc. 135, 5505–5508 (2013)

    Google Scholar 

  71. C. Rosman, S. Pierrat, A. Henkel, M. Tarantola, D. Schneider, E. Sunnick, A. Janshoff, C. Sönnichsen, A new approach to assess gold nanoparticle uptake by mammalian cells: combining optical dark-field and transmission electron microscopy. Small 8, 3683–3690 (2012)

    CAS  Google Scholar 

  72. Y. Li, J.T. Cox, B. Zhang, Electrochemical responses and electrocatalysis at single Au nanoparticles. J. Am. Chem. Soc. 132, 3047–3054 (2010)

    CAS  Google Scholar 

  73. Y.L. Ying, J.J. Zhang, R. Gao, Y.T. Long, Nanopore-based sequencing and detection of nucleic acids. Angew. Chem. Int. Ed. 52, 13154–13161 (2013)

    CAS  Google Scholar 

  74. M.P. Jonsson, C. Dekker, Plasmonic nanopore for electrical profiling of optical intensity landscapes. Nano Lett. 13, 1029–1033 (2013)

    CAS  Google Scholar 

  75. L.A. Austin, B. Kang, M.A. El-Sayed, A new nanotechnology technique for determining drug efficacy using targeted plasmonically enhanced single cell imaging spectroscopy. J. Am. Chem. Soc. 135, 4688–4691 (2013)

    CAS  Google Scholar 

  76. A.E. Klein, N. Janunts, M. Steinert, A. Tunnermann, T. Pertsch, Polarization-resolved near-field mapping of plasmonic aperture emission by a dual-SNOM system. Nano Lett. 14, 5010–5015 (2014)

    CAS  Google Scholar 

  77. M. Wagner, Z. Fei, A.S. McLeod, A.S. Rodin, W.Z. Bao, E.G. Iwinski, Z. Zhao, M. Goldflam, M.K. Liu, G. Dominguez, M. Thiemens, M.M. Fogler, A.H.C. Neto, C.N. Lau, S. Amarie, F. Keilmann, D.N. Basov, Ultrafast and nanoscale plasmonic phenomena in exfoliated graphene revealed by infrared pump-probe nanoscopy. Nano Lett. 14, 894–900 (2014)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Tao Long .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jing, C., Long, YT. (2016). Sensing on Single Plasmonics. In: Serpe, M.J., Kang, Y., Zhang, Q.M. (eds) Photonic Materials for Sensing, Biosensing and Display Devices. Springer Series in Materials Science, vol 229. Springer, Cham. https://doi.org/10.1007/978-3-319-24990-2_8

Download citation

Publish with us

Policies and ethics