Skip to main content

Evidence of Biogenic Activity in Quartz-Hematite Rocks of the Urals VMS Deposits

  • Conference paper
  • First Online:
Book cover Biogenic—Abiogenic Interactions in Natural and Anthropogenic Systems

Abstract

The textural, mineralogical, and geochemical features of quartz-hematite rocks associated with Urals VMS deposits indicate that the tube microfossils are responsible for immobilization and accumulation of chemical elements during precipitation of authigenic minerals. The crystallization of authigenic minerals is a result of submarine transformation of mixed hyaloclastitic, sulfide, and carbonate sediments and diagenetic processes, which modify the mineralogy and geochemistry of sediments. The tube microfossils about 100 μm across and up to 1 mm long consist of the external rim made up of fine-disperse hematite or hematite-quartz aggregates and of the internal channel filled with hematite and/or transparent quartz, fine-disperse hematite-quartz aggregates, leucoxene, rare sulfides, apatite, Fe-chlorite, and Mn-calcite. The carbon isotopic composition of calcite from quartz-hematite rocks with tube microfossils (up to −26.2 ‰) indicates its biogenic origin. The habitat conditions of the tube microfossils favored the mineral precipitation. The newly formed apatite, rutile, illite, monazite, dolomite, ankerite, siderite, monheimite, REE carbonates, anatase, leucoxene, Mn-oxides, titanomagnetite, and hematitized framboidal pyrite are observed in quartz-hematite matrix with abundant tube organisms in contrast to quartz-hematite rocks free of tube microfossils. Biomorphic hematite contains high contents of Mn (up to 9393 ppm), As (up to 1872 ppm), V (up to 779 ppm), W (up to 1091 ppm), Mo (up to 40 ppm), and U (up to 8.68 ppm), which are indicative of biological mechanisms of accumulation and conservation of these metals in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi M, Yamamoto K, Sugisaki R (1986) Hydrothermal cherts and associated siliceous rocks from the northern Pacific: their geological significance as indication of ocean ridge activity. Sed Geol 47:125–148

    Article  Google Scholar 

  • Ayupova NR, Maslennikov VV (2012) Biomineralisation in ferruginous-siliceous sediments of massive sulfide deposits of the Urals). Dokl Earth Sci 442(2):193–195

    Article  Google Scholar 

  • Ayupova NR, Maslennikov VV (2013) Biomorphic textures in the ferruginous–siliceous rocks of massive sulfide bearing paleohydrothermal fields in the Urals. Lithol Min Res 48:438–455

    Article  Google Scholar 

  • Bachofen R (1994) Cell structure and metabolism and its relation with the environment. In: Buuffle J, DeVitre RR (eds) Chemical and biological regulation of aquatic systems. Lewis Publishers, Roca Raton

    Google Scholar 

  • Banerjee NR, Furnes H, Muehlenbachs K, Staudigel H, de Wit M (2006) Preservation of 3.4–3.5 Ga microbial biomarkers in pillow lavas and hyaloclastites from the Barberton greenstone Belt South Africa. Earth Planet Sci Lett 241:707–722

    Article  Google Scholar 

  • Constantinou G, Govett GJS (1973) Geology, geochemistry, and genesis of Cyprus sulfide deposits. Econ Geol 68:843–858

    Article  Google Scholar 

  • Danyushevsky L, Robinson Ph, Gilbert S, Norman M, Large R, McGoldrick P, Shelley M (2011) Routine quantitative multi-element analysis of sulphide minerals by laser ablation ICP-MS: Standard development and consideration of matrix effects. Geochem: Explor Environ Anal 11:51–60

    Google Scholar 

  • Demina LL, Galkin SV, Lein AYu, Lisitsyn AP (2007) First data on microelemental composition of benthic organisms from the 9°50ʹ N hydrothermal field East Pacific Rise. Dokl Earth Sci 415(6):905–907

    Article  Google Scholar 

  • Duhig NC, Stolz J, Davidson GJ, Large RR (1992) Cambrian microbial and silica gel textures in silica iron exhalites from the Mount Windsor volcanic belt, Australia: their petrography, chemistry, and origin. Econ Geol 87:764–784

    Article  Google Scholar 

  • Emel’yanov EM, Mitropol’skii AYu, Shimkus KM, Mussa AA (1979) Geochemistry of the Mediterranean Sea. Kiev, Naukova dumka (in Russian)

    Google Scholar 

  • Fedonkin MA (2003) Geochemical impoverishment and eukaryotization of the biosphere: a causal link. Paleontol J 37(6):592–599

    Google Scholar 

  • Felbeck H (1981) Chemoautotrophic potential of the hydrothermal vent tube worm Riftia pachyptila Jones (Vestimentifera). Science 213:336–338

    Article  Google Scholar 

  • Gal’chenko VF, Galkin SV, Lein AYu, Moskalev LI, Ivanov MV (1988) A role of symbiotic bacteria in nutrition of invertebrates from active submarine hydrotherms. Okeanologiya 28(6):1020–1031

    Google Scholar 

  • Grenne T, Slack JF (2003) Bedded jaspers of the Ordovician Lökken ophiolite, Norway: seafloor deposition and diagenetic maturation of hydrothermal plume-derived silica-iron gels. Min Dep 38:625–639

    Article  Google Scholar 

  • Halbach M, Halbach P, Lueders V (2002) Sulfide-impregnated and pure silica precipitates of hydrothermal origin from the central Indian Ocean. Chem Geol 182:357–375

    Article  Google Scholar 

  • Hannington MD, Scott SD (1988) Mineralogy and geochemistry of a hydrothermal silica-sulfide-sulfate spire in the caldera of Axial Seamount, Juan de Fuca Ridge. Can Min 26:603–625

    Google Scholar 

  • Harder W, Dijkhuisen L (1983) Physical responses to nutrient limitation. Ann Rev Microbiol 37:1–23

    Article  Google Scholar 

  • Hein JR, Clague DA, Koski RA, Embley RW, Duhnam RE (2008) Metalliferous sediment and a silica-hematite deposit within the Blanco fracture zone, Northeast Pacific. Mar Geores Geotechnol 26:317–339

    Article  Google Scholar 

  • Hekinian R, Hoffert M, Larqué P, Cheminée JL, Stoffers P, Bideau D (1993) Hydrothermal Fe and Si oxyhydroxide deposits from South Pacific intraplate volcanoes and East Pacific rise axial and off-axial regions. Econ Geol 88:2099–2121

    Google Scholar 

  • Herzig PM, Hannington MD, Scott SD, Maliotis G, Rona PA, Thompson G (1991) Gold-rich sea-floor gossans in the Troodos ophiolite and on the Mid-Atlantic ridge. Econ Geol 86:1747–1755

    Article  Google Scholar 

  • Hoefs J (1997) Stable Isotope Geochemistry. Springer, Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong

    Google Scholar 

  • Juniper SK, Fouquet Y (1988) Filamentous iron-silica deposits from modern and ancient hydrothermal sites. Can Min 26:859–869

    Google Scholar 

  • Juniper SK, Jonnasson IR, Tunnicliffe V, Southward AJ (1992) Influence of tube building polychaete on hydrothermal chimney mineralization. Geol 20:895–898

    Article  Google Scholar 

  • Kalogeropoulos SI, Scott SD (1983) Mineralogy and geochemistry of tuffaceous exhalites (tetsusekiei) of the Fukazawa mine, Hokuroku district, Japan. Econ Geol Monogr 5:412–432

    Google Scholar 

  • Kennedy CB, Gault AG, Fortin D, Clark ID, Pedersen K, Scott SD, Ferris FG (2010) Carbon isotope fractionation by sircumneutral iron-oxidizing bacterias. Geology 38:1087–1090

    Article  Google Scholar 

  • Kletzin A, Adams MW (1996) Tungsten in biological systems. FEMS Microbiol Rev 18(1):5–63

    Article  Google Scholar 

  • Lein AYu, Sedykh EM, Starshinova NP (1989) Distribution of metals in bacteria and animals from submarine hydrothermal fields. Geokhimiya 2:297–303

    Google Scholar 

  • Little CTS, Maslennikov VV, Morris NJ, Gubanov AP (1999) Two paleozoic hydrothermal vent communities from the southern Ural Mountains, Russia. Paleontology 42:1043–1078

    Article  Google Scholar 

  • Little CTS, Glynn SEJ, Mills RA (2004) Four-hundred-and-ninety-million year record of bacteriogenic iron oxide precipitation at sea-floor hydrothermal vents. Geomicrobiol J 21:415–429

    Article  Google Scholar 

  • Maslennikov VV (1999) Sedimentogenesis, halmyrolysis and ecology of the massive sulfide paleohydrothermal fields (on the example of the Southern Urals). Geotur, Miass (in Russian)

    Google Scholar 

  • Maslennikov VV (2006) Lithogenesis and massive sulfide deposits formation. Institute of Mineralogy UB RAS, Miass (in Russian)

    Google Scholar 

  • Maslennikov VV, Ayupova NR, Herrington RJ, Danyushevskiy LV, Large RR (2012) Ferruginous and mangniferous haloes around massive sulphide deposits of the Urals. Ore Geol Rev 47:5–41

    Article  Google Scholar 

  • Maslennikov VV, Ayupova NR, Maslennikova SP, Tret’yakov GA, Melekestzeva IYu et al (2014) Toxic elements in massive sulfide systems. Yekaterinburg, RIO UB RAS (in Russian)

    Google Scholar 

  • McLean RJC, Fortin D, Brown DA (1996) Microbial metal-binding mechanisms and their relation to nuclear waste disposal. Can J Microbiol 42:392–400

    Article  Google Scholar 

  • Peter JM, Goodfellow WD (1996) Mineralogy, bulk and rare earth element geochemistry of massive sulphide-associated hydrothermal sediments of the Brunswick horizon, Bathurst mining camp, New Brunswick. Can J Earth Sci 33:252–283

    Article  Google Scholar 

  • Prokin VA, Necheuhin VM, Sopko PF et al (1985) Copper massive sulfide deposits of the Urals. Geological condition of location. Sverdlovsk: Urals branch of the Academy of Science of USSR; 1985 (in Russian)

    Google Scholar 

  • Wolfe-Simon F, Blum JS, Kulp TR, Gordon GW Hoeft SE, Pett-Ridge J, Stolz JF, Webb SM, Weber PK, Davies PCW, Anbar AD, Oremland RS (2010) A bacterium that can grow by using arsenic instead of phosphorus. Science 332(6034):1163–1166

    Google Scholar 

  • Zaykov VV (1991) Volcanism and sulfide mounds of paleoocean margins. Moscow, Nauka (in Russian)

    Google Scholar 

Download references

Acknowledgments

The mineralogical work was supported by the State Contract no. 01201350139. The analysis of trace element composition of quartz-hematite rocks was supported by the Russian Science Foundation (project no. 14-17-00691).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuriya R. Ayupova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ayupova, N.R., Maslennikov, V.V., Sadykov, S.A., Maslennikova, S.P., Danyushevsky, L.V. (2016). Evidence of Biogenic Activity in Quartz-Hematite Rocks of the Urals VMS Deposits. In: Frank-Kamenetskaya, O., Panova, E., Vlasov, D. (eds) Biogenic—Abiogenic Interactions in Natural and Anthropogenic Systems. Lecture Notes in Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-24987-2_10

Download citation

Publish with us

Policies and ethics