Skip to main content

Epigenetic Post transcriptional Mutation in Neuro-Oncology

  • Chapter
  • First Online:
Epigenetic Advancements in Cancer

Abstract

Epigenetics referred to the hereditary changes in gene expression at the level of mitosis, which are different from the changes in DNA sequences whereas epigenetic variation involves CpG Island (CGI) hypermethylation along with the silencing of tumor suppressor genes in case of brain tumors. In DNA methylation, cytosine nucleotides are methylated at fifth position of the pyrimidine ring when they are part of the symmetrical dinucleotide CpG. Each post-embryonic cell has a specific level of DNA methylation whereas an overall decrease in the methylation level in the genome is termed as hypomethylation. As repeated sequences (such as CpG) are ideal recombination sites, hypomethylation promotes mitotic recombination, but it increases with aging process. However, some CpG sites such as CpG islands (CGI) are not methylated in normal cells whereas in cancer cells, methylation of CGI is frequently observed in the promoter region of various genes dispersed throughout the genome. This state of methylation is known as hypermethylation and it induces silencing of the corresponding gene (usually tumor suppressor genes) either by directly inhibiting the binding of transcription factors or changing the chromatin structure by recruiting histone deacetylases. DNA hypomethylation and hypermethylation usually coexist in the same genome but at different sequences in a tumor cell.

Further, induced gene expression and protein function attributes to abrogated cell cycle leading to uncontrolled cell division and tumor growth, which invade into the nearby normal brain parenchyma cells. There are two major processes that regulate epigenesis, for instance, covalent modification of DNA and amino-acids present on histone. Apart from post-transcriptional histone modification and DNA methylation, other epigenetic variations include non-coding RNAs, chromatin modeling and remodeling. Epigenetic variations in the normal brain cells are the major cause of gliomas whereas particular variations in tumor aggression determine its response to therapy and survival rate of the patients. Similarly, epigenetic variations have been implicated in the pathogenesis of several neurodegenerative disorders (NDD) including Alzheimer’s disease (AD), Parkinson’s disease (PD), Poly Q diseases and have been shown to determine onset, latency and period of disease progression in NDD. From the various studies, an important epigenetic intervention came under the consideration, for instance, drugs that are normally used for clinical trials target Histone Deacetylase (HDAC) and termed as Histone Deacetylase Inhibitors (HDACi). In this chapter, we described the mechanism of epigenetic processes in the normal cells, their aberrations that linked to gliomas and other neurodegenerative disorders. Further, we discussed the potential role of epigenetic therapies in the amelioration of neuro-oncology and neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holliday R. Epigenetics: an overview. Dev Genet. 1994;15:453–7.

    Article  CAS  PubMed  Google Scholar 

  2. Mehler MF. Epigenetic principles and mechanisms underlying nervous system functions in health and disease. Prog Neurobiol. 2008;86:305–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Clark SJ, Harrison J, Frommer M. CpNpG methylation in mammalian cells. Nat Genet. 1995;10:20–7.

    Article  CAS  PubMed  Google Scholar 

  4. Lahiri DK, Maloney B. The “LEARn” (latent early-life associated regulation) model: an epigenetic pathway linking metabolic and cognitive disorders. J Alzheimers Dis. 2012;30:S15–30.

    PubMed  Google Scholar 

  5. Bestor TH. Cloning of a mammalian DNA methyltransferase. Gene. 1988;74:9–12.

    Article  CAS  PubMed  Google Scholar 

  6. Okano M, Xie S, Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet. 1998;19:219–20.

    Article  CAS  PubMed  Google Scholar 

  7. Hansen RS, Gartler SM. 5-Azacytidine-induced reactivation of the human X chromosome-linked PGK1 gene is associated with a large region of cytosine demethylation in the 5′ CpG island. Proc Natl Acad Sci U S A. 1990;87:4174–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mohandas T, Sparkes RS, Shapiro LJ. Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation. Science. 1981;211:393–6.

    Article  CAS  PubMed  Google Scholar 

  9. Eden A, Gaudet F, Waghmare A, et al. Chromosomal instability and tumors promoted by DNA hypomethylation. Science. 2003;300:455.

    Article  CAS  PubMed  Google Scholar 

  10. Walsh CP, Chaillet JR, Bestor TH. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat Genet. 1998;20:116–7.

    Article  CAS  PubMed  Google Scholar 

  11. Egger G, Liang G, Aparicio A, et al. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004;429:457–63.

    Article  CAS  PubMed  Google Scholar 

  12. Rodenhiser D, Mann M. Epigenetics and human disease: translating basic biology into clinical applications. CMAJ. 2006;174:341–8.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Turner BM. Reading signals on the nucleosome with a new nomenclature for modified histones. Nat Struct Mol Biol. 2005;12:110–2.

    Article  CAS  PubMed  Google Scholar 

  14. Babenko O, Kovalchuk I, Metz GA. Epigenetic programming of neurodegenerative diseases by an adverse environment. Brain Res. 2012;1444:96–111.

    Article  CAS  PubMed  Google Scholar 

  15. Tawa R, Ono T, Kurishita A, et al. Changes of DNA methylation level during pre and postnatal periods in mice. Differentiation. 1990;45:44–8.

    Article  CAS  PubMed  Google Scholar 

  16. Lein ES, Hawrylycz MJ, Ao N, et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2007;445:168–76.

    Article  CAS  PubMed  Google Scholar 

  17. Goto K, Numata M, Komura JI, et al. Expression of DNA methyltransferase gene in mature and immature neurons as well as proliferating cells in mice. Differentiation. 1994;56:39–44.

    Article  CAS  PubMed  Google Scholar 

  18. Inano K, Suetake I, Ueda T, et al. Maintenance-type DNA methyltransferase is highly expressed in post-mitotic neurons and localized in the cytoplasmic compartment. J Biochem (Tokyo). 2000;128:315–21.

    Article  CAS  Google Scholar 

  19. Trasler JM, Trasler DG, Bestor TH, et al. DNA methyltransferase in normal and Dnmtn/Dnmtn mouse embryos. Dev Dyn. 1996;206:239–47.

    Article  CAS  PubMed  Google Scholar 

  20. Fan G, Beard C, Chen RZ, et al. DNA hypomethylation perturbs the function and survival of CNS neurons in postnatal animals. J Neurosci. 2001;21:788–97.

    CAS  PubMed  Google Scholar 

  21. Martinowich K, Hattori D, Wu H, et al. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science. 2003;302:890–3.

    Article  CAS  PubMed  Google Scholar 

  22. Feng J, Chang H, Li E, et al. Dynamic expression of de novo DNA methyltransferases Dnmt3a and Dnmt3b in the central nervous system. J Neurosci Res. 2005;79:734–46.

    Article  CAS  PubMed  Google Scholar 

  23. Okano M, Bell DW, Haber DA, et al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99:247–57.

    Article  CAS  PubMed  Google Scholar 

  24. Nguyen S, Meletis K, Fu D, et al. Ablation of de novo DNA methyltransferase Dnmt3a in the nervous system leads to neuromuscular defects and shortened lifespan. Dev Dyn. 2007;236:1663–76.

    Article  CAS  PubMed  Google Scholar 

  25. Ma DK, Jang MH, Guo JU, et al. Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science. 2009;323(5917):1074–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mohn F, Weber M, Rebhan M, et al. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol Cell. 2008;30:755–66.

    Article  CAS  PubMed  Google Scholar 

  27. Amir RE, Van den Veyver IB, Wan M, et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 1999;23:185–8.

    Article  CAS  PubMed  Google Scholar 

  28. Hansen RS, Wijmenga C, Luo P, et al. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc Natl Acad Sci U S A. 1999;96:14412–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tuck-Muller CM, Narayan A, Tsien F, et al. DNA hypomethylation and unusual chromosome instability in cell lines from ICF syndrome patients. Cytogenet Cell Genet. 2000;89:121–8.

    Article  CAS  PubMed  Google Scholar 

  30. Xu GL, Bestor TH, Bourc’his D, et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature. 1999;402:187–91.

    Article  CAS  PubMed  Google Scholar 

  31. Lee J, Son MJ, Woolard K, et al. Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. Cancer Cell. 2008;13:69–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yi JM, Tsai HC, Glockner SC, et al. Abnormal DNA methylation of CD133 in colorectal and glioblastoma tumors. Cancer Res. 2008;68:8094–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Uhlmann K, Rohde K, Zeller C, et al. Distinct methylation profiles of glioma subtypes. Int J Cancer. 2003;106:52–9.

    Article  CAS  PubMed  Google Scholar 

  34. Ohgaki H, Kleihues P. Genetic pathways to primary and secondary glioblastoma. Am J Pathol. 2007;170:1445–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bello MJ, Martinez-Glez V, Franco-Hernandez C, et al. DNA methylation pattern in 16 tumor related genes in Schwannomas. Cancer Genet Cytogenet. 2007;172:84–6.

    Article  CAS  PubMed  Google Scholar 

  36. Lomas J, Bello MJ, Arjona D, et al. Genetic and epigenetic alteration of the NF2 gene in sporadic meningiomas. Genes Chromosomes Cancer. 2005;42:314–9.

    Article  CAS  PubMed  Google Scholar 

  37. Martinez R, Setien F, Voelter C, et al. CpG island promoter hypermethylation of the pro-apoptotic gene caspase-8 is a common hallmark of relapsed glioblastoma multiforme. Carcinogenesis. 2007;28:1264–8.

    Article  CAS  PubMed  Google Scholar 

  38. Costello JF, Futscher BW, Kroes RA, et al. Methylation-related chromatin structure is associated with exclusion of transcription factors from and suppressed expression of the O-6-methylguanine DNA methyltransferase gene in human glioma cell lines. Mol Cell Biol. 1994;14:6515–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Costello JF, Futscher BW, Tano K, et al. Graded methylation in the promoter and body of the O6-methylguanine DNA methyltransferase (MGMT) gene correlates with MGMT expression in human glioma cells. J Biol Chem. 1994;269:17228–37.

    CAS  PubMed  Google Scholar 

  40. Pieper RO, Costello JF, Kroes RA, et al. Direct correlation between methylation status and expression of the human O-6-methylguanine DNA methyltransferase gene. Cancer Commun. 1991;3:241–53.

    CAS  PubMed  Google Scholar 

  41. Esteller M, Hamilton SR, Burger PC, et al. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res. 1999;59:793–7.

    CAS  PubMed  Google Scholar 

  42. Gerson SL. MGMT: its role in cancer aetiology and cancer therapeutics. Nat Rev Cancer. 2004;4:296–307.

    Article  CAS  PubMed  Google Scholar 

  43. Gerson SL. MGMT: its role in cancer etiology and cancer therapeutics. Nat Rev Cancer. 2004;4(4):296–307.

    Article  CAS  PubMed  Google Scholar 

  44. McLendon R, Friedman A, Bigner D, et al. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061–8.

    Article  CAS  Google Scholar 

  45. Everhard S, Kaloshi G, Criniere E, et al. MGMT methylation: a marker of response to temozolomide in low-grade gliomas. Ann Neurol. 2006;60:740–3.

    Article  CAS  PubMed  Google Scholar 

  46. Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352:997–1003.

    Article  CAS  PubMed  Google Scholar 

  47. Brandes AA, Franceschi E, Tosoni A, et al. MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol. 2008;26:2192–7.

    Article  PubMed  Google Scholar 

  48. Lavon I, Zrihan D, Zelikovitch B, et al. Longitudinal assessment of genetic and epigenetic markers in oligodendrogliomas. Clin Cancer Res. 2007;13:1429–37.

    Article  CAS  PubMed  Google Scholar 

  49. Cadieux B, Ching TT, VandenBerg SR, et al. Genome-wide hypomethylation in human glioblastomas associated with specific copy number alteration, methylenetetrahydrofolate reductase allele status, and increased proliferation. Cancer Res. 2006;66(17):8469–76.

    Article  CAS  PubMed  Google Scholar 

  50. De Smet C, De Backer O, Faraoni I, et al. The activation of human gene MAGE-1 in tumor cells is correlated with genome-wide demethylation. Proc Natl Acad Sci U S A. 1996;93:7149–53.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Fanelli M, Caprodossi S, Ricci-Vitiani L, et al. Loss of pericentromeric DNA methylation pattern in human glioblastoma is associated with altered DNA methyltransferases expression and involves the stem cell compartment. Oncogene. 2008;27:358–65.

    Article  CAS  PubMed  Google Scholar 

  52. Yu J, Zhang H, Gu J, et al. Methylation profiles of thirty four promoter-CpG islands and concordant methylation behaviours of sixteen genes that may contribute to carcinogenesis of astrocytoma. BMC Cancer. 2004;4:65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. McClelland M, Ivarie R. Asymmetrical distribution of CpG in an ‘average’ mammalian gene. Nucleic Acids Res. 1982;10:7865–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Amatya VJ, Naumann U, Weller M. TP53 promoter methylation in human gliomas. Acta Neuropathol. 2005;110:178–84.

    Article  CAS  PubMed  Google Scholar 

  55. Baeza N, Weller M, Yonekawa Y, et al. PTEN methylation and expression in glioblastomas. Acta Neuropathol. 2003;106:479–85.

    Article  CAS  PubMed  Google Scholar 

  56. Bello MJ, Rey JA. The p53/Mdm2/p14ARF cell cycle control pathway genes may be inactivated by genetic and epigenetic mechanisms in gliomas. Cancer Genet Cytogenet. 2006;164:72–3.

    Article  CAS  Google Scholar 

  57. Costello JF, Berger MS, Huang HS, et al. Silencing of p16/CDKN2 expression in human gliomas by methylation and chromatin condensation. Cancer Res. 1996;56:2405–10.

    CAS  PubMed  Google Scholar 

  58. Nakamura M, Yonekawa Y, Kleihues P, et al. Promoter hypermethylation of the RB1 gene in glioblastomas. Lab Invest. 2001;81:77–82.

    Article  CAS  PubMed  Google Scholar 

  59. Watanabe T, Yokoo H, Yokoo M, et al. Concurrent inactivation of RB1 and TP53 pathways in anaplastic oligodendrogliomas. J Neuropathol Exp Neurol. 2001;60:1181–9.

    Article  CAS  PubMed  Google Scholar 

  60. Bruna A, Darken RS, Rojo F, et al. High TGFbeta-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cancer Cell. 2007;11:147–60.

    Article  CAS  PubMed  Google Scholar 

  61. Waha A, Guntner S, Huang TH, et al. Epigenetic silencing of the protocadherin family member PCDH-gamma-A11 in astrocytomas. Neoplasia. 2005;7:193–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zardo G, Tiirikainen MI, Hong C, et al. Integrated genomic and epigenomic analyses pinpoint biallelic gene inactivation in tumors. Nat Genet. 2002;32:453–8.

    Article  CAS  PubMed  Google Scholar 

  63. Zhou H, Miki R, Eeva M, et al. Reciprocal regulation of SOCS 1 and SOCS3 enhances resistance to ionizing radiation in glioblastoma multiforme. Clin Cancer Res. 2007;13:2344–53.

    Article  CAS  PubMed  Google Scholar 

  64. Costanzi-Strauss E, Strauss BE, Naviaux RK, et al. Restoration of growth arrest by p16INK4, p21WAF1, pRB, and p53 is dependent on the integrity of the endogenous cell-cycle control pathways in human glioblastoma cell lines. Exp Cell Res. 1998;238:51–62.

    Article  CAS  PubMed  Google Scholar 

  65. Newcomb EW, Cohen H, Lee SR, et al. Survival of patients with glioblastoma multiforme is not influenced by altered expression of p16, p53, EGFR, MDM2 or Bcl-2 genes. Brain Pathol. 1998;8:655–67.

    Article  CAS  PubMed  Google Scholar 

  66. Dams E, Van de Kelft EJZ, Martin JJ, et al. Instability of microsatellites in human gliomas. Cancer Res. 1995;1995(55):1547–9.

    Google Scholar 

  67. Zhu JJ, Santarius T, Wu X, et al. Screening for loss of heterozygosity and microsatellite instability in oligodendrogliomas. Genes Chromosomes Cancer. 1998;21:207–16.

    Article  CAS  PubMed  Google Scholar 

  68. Tso CL, Freije WA, Day A, et al. Distinct transcription profiles of primary and secondary glioblastoma subgroups. Cancer Res. 2006;66:159–67.

    Article  CAS  PubMed  Google Scholar 

  69. Bigey P, Ramchandani S, Theberge J, et al. Transcriptional regulation of the human DNA methyltransferase (dnmt1) gene. Gene. 2000;242:407–18.

    Article  CAS  PubMed  Google Scholar 

  70. Antoun G, Baylin SB, Ali-Osman F. DNA methyltransferase levels and altered CpG methylation in the total genome and in the GSTP1 gene in human glioma cells transfected with sense and antisense DNA methyltransferase cDNA. J Cell Biochem. 2000;77:372–81.

    Article  CAS  PubMed  Google Scholar 

  71. Etoh T, Kanai Y, Ushijima S, et al. Increased DNA methyltransferase 1 (DNMT1) protein expression correlates significantly with poorer tumor differentiation and frequent DNA hypermethylation of multiple CpG islands in gastric cancers. Am J Pathol. 2004;164:689–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ishii T, Kohu K, Yamada S, et al. Up-regulation of DNA-methyltransferase 3A expression is associated with hypomethylation of intron 25 in human testicular germ cell tumors. Tohoku J Exp Med. 2007;212:177–90.

    Article  CAS  PubMed  Google Scholar 

  73. Jair KW, Bachman KE, Suzuki H, et al. De novo CpG island methylation in human cancer cells. Cancer Res. 2006;2006(66):682–92.

    Article  Google Scholar 

  74. Arteaga CL. The epidermal growth factor receptor: from mutant oncogene in nonhuman cancers to therapeutic target in human neoplasia. J Clin Oncol. 2001;19:32S–40.

    CAS  PubMed  Google Scholar 

  75. Möllemann M, Wolter M, Felsberg J, et al. Frequent promoter hypermethylation and low expression of the MGMT gene in oligodendroglial tumors. Int J Cancer. 2005;113:379–85.

    Article  PubMed  CAS  Google Scholar 

  76. Fan X, Mikolaenko I, Elhassan I, et al. Notch1 and Notch2 have opposite effects on embryonal brain tumor growth. Cancer Res. 2004;64:7787–93.

    Article  CAS  PubMed  Google Scholar 

  77. Meissner A, Gnirke A, Bell GW, et al. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res. 2005;33:5868–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Weber M, Davies JJ, Wittig D, et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet. 2005;37:853–62.

    Article  CAS  PubMed  Google Scholar 

  79. Karpf AR, Peterson PW, Rawlins JT, et al. Inhibition of DNA methyltransferase stimulates the expression of signal transducer and activator of transcription 1, 2, and 3 genes in colon tumor cells. Proc Natl Acad Sci U S A. 1999;96:14007–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Foltz G, Ryu GY, Yoon JG, et al. Genome-wide analysis of epigenetic silencing identifies BEX1 and BEX2 as candidate tumor suppressor genes in malignant glioma. Cancer Res. 2006;66:6665–74.

    Article  CAS  PubMed  Google Scholar 

  81. Kongkham PN, Northcott PA, Ra YS, et al. An epigenetic genome-wide screen identifies SPINT2 as a novel tumor suppressor gene in pediatric medulloblastoma. Cancer Res. 2008;68:9945–53.

    Article  CAS  PubMed  Google Scholar 

  82. Mueller W, Nutt CL, Ehrich M, et al. Downregulation of RUNX3 and TES by hypermethylation in glioblastoma. Oncogene. 2007;26:583–93.

    Article  CAS  PubMed  Google Scholar 

  83. Di Croce L. Chromatin modifying activity of leukaemia associated fusion proteins. Hum Mol Genet. 2005;1:R77–84.

    Article  CAS  Google Scholar 

  84. Hayry V, Tanner M, Blom T, et al. Copy number alterations of the polycomb gene BMI1 in gliomas. Acta Neuropathol. 2008;116:97–102.

    Article  PubMed  CAS  Google Scholar 

  85. Tirabosco R, De Maglio G, Skrap M, et al. Expression of the Polycomb-Group protein BMI1 and correlation with p16 in astrocytomas an immunohistochemical study on 80 cases. Pathol Res Pract. 2008;204:625–31.

    Article  PubMed  Google Scholar 

  86. Lucio-Eterovic AK, Cortez MA, Valera ET, et al. Differential expression of 12 histone deacetylase (HDAC) genes in astrocytomas and normal brain tissue: class II and IV are hypoexpressed in glioblastomas. BMC Cancer. 2008;8:243.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Parsons DW, Jones S, Zhang X, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321(5897):1807–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nagarajan RP, Costello JF. Epigenetic mechanisms in glioblastoma multiforme. Semin Cancer Biol. 2009;19(3):188–97.

    Article  CAS  PubMed  Google Scholar 

  89. Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005;6:376–85.

    Article  CAS  PubMed  Google Scholar 

  90. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cho WC. OncomiRs: the discovery and progress of microRNAs in cancers. Mol Cancer. 2007;6:60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  CAS  PubMed  Google Scholar 

  93. Hansen KF, Obrietan K. microRNA as therapeutic targets for treatment of depression. Neuropsychiatr Dis Treat. 2013;9:1011–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Lang MF, Yang S, Zhao C, et al. Genome-wide profiling identified a set of miRNAs that are differentially expressed in glioblastoma stem cells and normal neural stem cells. PLoS One. 2012;7(e3624816):281–97.

    Google Scholar 

  95. Guessous F, Alvarado-Velez M, Marcinkiewicz L, et al. Oncogenic effects of miR-10b in glioblastoma stem cells. J Neurooncol. 2013;112:153–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Schraivogel D, Weinmann L, Beier D, et al. CAMTA1 is a novel tumour suppressor regulated by miR-9/9 in glioblastoma stem cells. EMBO J. 2011;30:4309–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Urdinguio RG, Sanchez-Mut JV, Esteller M. Epigenetic mechanisms in neurological diseases: genes, syndromes and therapies. Lancet Neurol. 2009;8:1056–7.

    Article  CAS  PubMed  Google Scholar 

  98. Sankova N, Renthal W, Kumar A, et al. Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci. 2007;8:355–67.

    Article  CAS  Google Scholar 

  99. Kwok JB. Role of epigenetics in Alzheimer’s and Parkinson’s disease. Epigenomics. 2010;5:671–82.

    Article  Google Scholar 

  100. Bahari-Javan S, Sananbenesi F, Fischer A. Histone-acetylation: a link between Alzheimer’s disease and post-traumatic stress disorder? Front Neurosci. 2014;8:160.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Abel T, Zukin RS. Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Curr Opin Pharmacol. 2008;8:57–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fischer A, Sananbenesi F, Mungenast A, et al. Targeting the right HDAC(s) to treat cognitive diseases. Trends Pharmacol Sci. 2010;31:605–17.

    Article  CAS  PubMed  Google Scholar 

  103. Jakovcevski M, Akbarian S. Epigenetic mechanisms in neurological disease. Nat Med. 2012;18:1194–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Parkel S, Lopez-Atalaya JP, Barco A. Histone H3 lysine methylation in cognition and intellectual disability disorders. Learn Mem. 2013;20:570–9.

    Article  CAS  PubMed  Google Scholar 

  105. Rudenko A, Tsai LH. Epigenetic modifications in the nervous system and their impact upon cognitive impairments. Neuropharmacology. 2014;80:70–82.

    Article  CAS  PubMed  Google Scholar 

  106. Day JJ, Sweatt JD. DNA methylation and memory formation. Nat Neurosci. 2010;13:1319–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Guo JU, Ma DK, Mo H, et al. Neuronal activity modifies the DNA methylation landscape in the adult brain. Nat Neurosci. 2011;14:1345–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Alarcon JM, Malleret G, Touzani K, et al. Chromatin acetylation, memory, and LTP are impaired in CBP+/− mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron. 2004;42:947–59.

    Article  CAS  PubMed  Google Scholar 

  109. Barrett RM, Malvaez M, Kramar E, et al. Hippocampal focal knockout of CBP affects specific histone modifications, long-term potentiation, and long-term memory. Neuropsychopharmacology. 2011;36:1545–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chen G, Zou X, Watanabe H, et al. CREB binding protein is required for both short-term and long-term memory formation. J Neurosci. 2010;30:13066–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Korzus E, Rosenfeld MG, Mayford M. CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron. 2004;42:961–72.

    Article  CAS  PubMed  Google Scholar 

  112. Maurice T, Duclot F, Meunier J, et al. Altered memory capacities and response to stress in p300/CBP-associated factor (PCAF) histone acetylase knockout mice. Neuropsychopharmacology. 2008;33:1584–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. McNulty SE, Barrett RM, Vogel-Ciernia A, et al. Differential roles for Nr4a1 and Nr4a2 in object location vs. object recognition long-term memory. Learn Mem. 2012;19:588–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Oliveira AM, Wood MA, McDonough CB, et al. Transgenic mice expressing an inhibitory truncated form of p300 exhibit long-term memory deficits. Learn Mem. 2007;14:564–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Vecsey CG, Hawk JD, Lattal KM, et al. Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB:CBP-dependent transcriptional activation. J Neurosci. 2007;27:6128–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wood MA, Attner MA, Oliveira AM, et al. A transcription factor-binding domain of the coactivator CBP is essential for long-term memory and the expression of specific target genes. Learn Mem. 2006;13:609–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Fischer A, Sananbenesi F, Wang X, et al. Recovery of learning and memory after neuronal loss is associated with chromatin remodeling. Nature. 2007;447:178–82.

    Article  CAS  PubMed  Google Scholar 

  118. Levenson JM, O’Riordan KJ, Brown KD, et al. Regulation of histone acetylation during memory formation in the hippocampus. J Biol Chem. 2004;279:40545–59.

    Article  CAS  PubMed  Google Scholar 

  119. Guan JS, Haggarty SJ, Giacometti E, et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature. 2009;459:55–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. McQuown SC, Barrett RM, Matheos DP, et al. HDAC3 is a critical negative regulator of long-term memory formation. J Neurosci. 2011;31:764–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kim MS, Akhtar MW, Adachi M, et al. An essential role for histone deacetylase 4 in synaptic plasticity and memory formation. J Neurosci. 2012;32:10879–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sando 3rd R, Gounko N, Pieraut S, et al. HDAC4 governs a transcriptional program essential for synaptic plasticity and memory. Cell. 2012;151:821–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Williams SR, Aldred MA, Der Kaloustian VM, et al. Haploinsufficiency of HDAC4 causes brachydactyly mental retardation syndrome, with brachydactyly type E, developmental delays, and behavioral problems. Am J Hum Genet. 2010;87:219–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kohler BA, Ward E, McCarthy BJ, et al. Annual report to the nation on the status of cancer, 1975–2007 featuring tumors of the brain and other nervous system. J Natl Cancer Inst. 2011;103:714–36.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Kang MK, Kang SK. Tumorigenesis of chemotherapeutic drug-resistant cancer stemlike cells in brain glioma. Stem Cells Dev. 2007;16:837–47.

    Article  CAS  PubMed  Google Scholar 

  126. Stupp R, Hegi ME, Mason WP, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10:459–66.

    Article  CAS  PubMed  Google Scholar 

  127. Bachoo RM, Maher EA, Ligon KL, et al. Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell. 2002;1:269–77.

    Article  CAS  PubMed  Google Scholar 

  128. Dai C, Celestino JC, Okada Y, et al. PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev. 2001;15:1913–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Persano L, Rampazzo E, Basso G, et al. Glioblastoma cancer stem cells: role of the microenvironment and therapeutic targeting. Biochem Pharmacol. 2013;85:612–22.

    Article  CAS  PubMed  Google Scholar 

  130. Lee J, Kotliarova S, Kotliarov Y, et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell. 2006;9:391–403.

    Article  CAS  PubMed  Google Scholar 

  131. Panagiotakos G, Tabar V. Brain tumor stem cells. Curr Neurol Neurosci Rep. 2007;7:215–20.

    Article  PubMed  Google Scholar 

  132. Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–8.

    CAS  PubMed  Google Scholar 

  133. Huang Z, Cheng L, Guryanova OA, et al. Cancer stem cells in glioblastoma—molecular signaling and therapeutic targeting. Protein Cell. 2010;1:638–55.

    Article  CAS  PubMed  Google Scholar 

  134. Wang W, Dai LX, Zhang S, et al. Regulation of epidermal growth factor receptor signaling by plasmid-based microRNA-7 inhibits human malignant gliomas growth and metastasis in vivo. Neoplasma. 2013;60:274–83.

    Article  CAS  PubMed  Google Scholar 

  135. Zhang K, Schrag M, Crofton A, et al. Targeted proteomics for quantification of histone acetylation in Alzheimer’s disease. Proteomics. 2012;12:1261–8.

    Article  CAS  PubMed  Google Scholar 

  136. Zhang Y, Dutta A, Abounader R. The role of microRNAs in glioma initiation and progression. Front Biosci. 2012;17:700–12.

    Article  CAS  Google Scholar 

  137. Lattal KW, Wood MA. Epigenetics and persistent memory: implications for reconsolidation and silent extinction beyond the zero. Nat Neurosci. 2013;16:124–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Puckett RE, Lubin FD. Epigenetic mechanisms in experience driven memory formation and behaviour. Epigenomics. 2011;3:649–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Sultan FA, Day JJ. Epigenetic mechanisms in memory and synaptic function. Epigenomics. 2011;3:157–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Coppedè F. Advances in the genetics and epigenetics of neurodegenerative diseases. Epigenetics Neurodegener Dis. 2014;1:3–31.

    Google Scholar 

  141. Karagiannis TC, Ververis K. Potential of chromatin modifying compounds for the treatment of Alzheimer’s disease. Pathobiol Aging Age Relat Dis. 2012;2:14980.

    CAS  Google Scholar 

  142. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3:415–28.

    Article  CAS  PubMed  Google Scholar 

  143. Baylin S, Bestor TH. Altered methylation patterns in cancer cell genomes: cause or consequence? Cancer Cell. 2002;1(4):299–305.

    Article  CAS  PubMed  Google Scholar 

  144. Costello JF. DNA methylation in brain development and gliomagenesis. Front Biosci. 2003;8:S175–84.

    Article  CAS  PubMed  Google Scholar 

  145. Weiss WA, Burns MJ, Hackett C, et al. Genetic determinants of malignancy in a mouse model for oligodendroglioma. Cancer Res. 2003;63:1589–95.

    CAS  PubMed  Google Scholar 

  146. Holland EC, Celestino J, Dai C, et al. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet. 2000;25:55–7.

    Article  CAS  PubMed  Google Scholar 

  147. Holland EC, Li Y, Celestino J, et al. Astrocytes give rise to oligodendrogliomas and astrocytomas after gene transfer of polyoma virus middle T antigen in vivo. Am J Pathol. 2000;157(3):1031–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Ding H, Shannon P, Lau N, et al. Oligodendrogliomas result from the expression of an activated mutant epidermal growth factor receptor in a RAS transgenic mouse astrocytoma model. Cancer Res. 2003;63:1106–13.

    CAS  PubMed  Google Scholar 

  149. Jenkins D. Hedgehog signalling: emerging evidence for non-canonical pathways. Cell Signal. 2009;21(7):1023–34.

    Article  CAS  PubMed  Google Scholar 

  150. Lauth M, Toftgard R. Non-canonical activation of GLI transcription factors: implications for targeted anti-cancer therapy. Cell Cycle. 2007;6(20):2458–63.

    Article  CAS  PubMed  Google Scholar 

  151. Morton JP, Lewis BC. Shh signaling and pancreatic cancer: implications for therapy? Cell Cycle. 2007;6(13):1553–7.

    Article  CAS  PubMed  Google Scholar 

  152. Hatton BA, Villavicencio EH, Pritchard J, et al. Notch signaling is not essential in sonic hedgehog-activated medulloblastoma. Oncogene. 2010;29(26):3865–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Fruhwald MC, O’Dorisio MS, Dai Z, et al. Aberrant promoter methylation of previously unidentified target genes is a common abnormality in medulloblastomas—implications for tumor biology and potential clinical utility. Oncogene. 2001;20(36):5033–42.

    Article  CAS  PubMed  Google Scholar 

  154. Lindsey JC, Anderton JA, Lusher ME, et al. Epigenetic events in medulloblastoma development. Neurosurg Focus. 2005;19(5), E10.

    Article  PubMed  Google Scholar 

  155. Northcott PA, Nakahara Y, Wu X, et al. Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma. Nat Genet. 2009;41(4):465–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Irizarry RA, Ladd-Acosta C, Wen B, et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet. 2009;41(2):178–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10(10):704–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Davalos V, Esteller M. MicroRNAs and cancer epigenetics: a macrorevolution. Curr Opin Oncol. 2010;22(1):35–45.

    Article  CAS  PubMed  Google Scholar 

  159. Garzon R, Calin GA, Croce CM. MicroRNAs in cancer. Annu Rev Med. 2009;60:167–79.

    Article  CAS  PubMed  Google Scholar 

  160. Ryan BM, Robles AI, Harris CC. Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer. 2010;10(6):389–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Waldman SA, Terzic A. A study of microRNAs in silico and in vivo: diagnostic and therapeutic applications in cancer. FEBS J. 2009;276(8):2157–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Tsang J, Zhu J, van Oudenaarden A. MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol Cell. 2007;26(5):753–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Martinez R, Schackert G. Epigenetic aberrations in malignant gliomas: an open door leading to better understanding and treatment. Epigenetics. 2007;2:147–50.

    Article  PubMed  Google Scholar 

  164. Abdouh M, Facchino S, Chatoo W, et al. BMI1 sustains human glioblastoma multiforme stem cell renewal. J Neurosci. 2009;29:8884–96.

    Article  CAS  PubMed  Google Scholar 

  165. Suva ML, Riggi N, Janiszewska M, et al. EZH2 is essential for glioblastoma cancer stem cell maintenance. Cancer Res. 2009;69:9211–8.

    Article  CAS  PubMed  Google Scholar 

  166. Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life. Nature. 2011;469:343–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Schuettengruber B, Cavalli G. Recruitment of polycomb group complexes and their role in the dynamic regulation of cell fate choice. Development. 2009;136:3531–42.

    Article  CAS  PubMed  Google Scholar 

  168. Simon JA, Kingston RE. Mechanisms of polycomb gene silencing: knowns and unknowns. Nat Rev Mol Cell Biol. 2009;10:697–708.

    Article  CAS  PubMed  Google Scholar 

  169. Doi A, Park IH, Wen B, et al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet. 2009;41:1350–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Baylin SB, Jones PA. A decade of exploring the cancer epigenome—biological and translational implications. Nat Rev Cancer. 2011;11:726–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Park YJ, Claus R, Weichenhan D, et al. Genome-wide epigenetic modifications in cancer. Prog Drug Res. 2011;67:25–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Oosterhuis JW, Looijenga LH. Testicular germ-cell tumours in a broader perspective. Nat Rev Cancer. 2005;5:210–22.

    Article  CAS  PubMed  Google Scholar 

  173. Okamoto K, Kawakami T. Epigenetic profile of testicular germ cell tumours. Int J Androl. 2007;30:385–92, discussion 392.

    Article  CAS  PubMed  Google Scholar 

  174. Smiraglia DJ, Szymanska J, Kraggerud SM, et al. Distinct epigenetic phenotypes in seminomatous and nonseminomatous testicular germ cell tumors. Oncogene. 2002;21:3909–16.

    Article  CAS  PubMed  Google Scholar 

  175. Wermann H, Stoop H, Gillis AJ, et al. Global DNA methylation in fetal human germ cells and germ cell tumours: association with differentiation and cisplatin resistance. J Pathol. 2010;221:433–42.

    CAS  PubMed  Google Scholar 

  176. Ernst J, Kellis M. Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat Biotechnol. 2010;28:817–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Farrell WE. A novel apoptosis gene identified in the pituitary gland. Neuroendocrinology. 2006;84(4).

    Google Scholar 

  178. Goeppert B, Schmidt CR, Geiselhart L, et al. Differential expression of the tumor suppressor A-kinase anchor protein 12 in human diffuse and pilocytic astrocytomas is regulated by promoter methylation. J Neuropathol Exp Neurol. 2013;72(10):933–41.

    Article  CAS  PubMed  Google Scholar 

  179. Desplats P, Spencer B, Coffee E, et al. Alpha-synuclein sequesters Dnmt1 from the nucleus: a novel mechanism for epigenetic alterations in Lewy body diseases. J Biol Chem. 2011;286:9031–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Jowaed A, Schmitt I, Kaut O, et al. Methylation regulates alpha-synuclein expression and is decreased in Parkinson’s disease patients’ brains. J Neurosci. 2010;30(18):6355–9.

    Article  CAS  PubMed  Google Scholar 

  181. Matsumoto L, Takuma H, Tamaoka A, et al. CpG demethylation enhances alpha-synuclein expression and affects the pathogenesis of Parkinson’s disease. PLoS One. 2010;5(11):1–9.

    Article  CAS  Google Scholar 

  182. Maeda JZ, Guan JI, Oyama Y, et al. Aging-associated alteration of subtelomeric methylation in Parkinson’s disease. J Gerontol A Biol Sci Med Sci. 2009;64(9):949–55.

    Article  PubMed  CAS  Google Scholar 

  183. Goers J, Manning-Bog AB, McCormack AL, et al. Nuclear localization of α-synuclein and its interaction with histones. Biochemistry. 2003;42(28):8465–71.

    Article  CAS  PubMed  Google Scholar 

  184. Kontopoulos E, Parvin JD, Feany MB. α-synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity. Hum Mol Genet. 2006;15(20):3012–23.

    Article  CAS  PubMed  Google Scholar 

  185. Kim K, Inoue J, Ishii J, et al. A microRNA feedback circuit in midbrain dopamine neurons. Science. 2007;317(5842):1220–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Miñones-Moyano E, Porta S, Escaramıs G, et al. Micro-RNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet. 2011;20(15):3067–78.

    Article  PubMed  CAS  Google Scholar 

  187. Miñones-Moyano E, Friedländer MR, Pallares J, et al. Upregulation of a small vault RNA (svtRNA2-1a) is an early event in Parkinson disease and induces neuronal dysfunction. RNA Biol. 2013;10:10.

    Article  CAS  Google Scholar 

  188. Bradley-Whitman MA, Lovell MA. Epigenetic changes in the progression of Alzheimer’s disease. Mech Ageing Dev. 2013;134(10):486–95.

    Article  CAS  PubMed  Google Scholar 

  189. Yu CE, Cudaback E, Foraker J, et al. Epigenetic signature and enhancer activity of the human APOE gene. Hum Mol Genet. 2013;22(24):5036–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Hodgson N, Trivedi M, Muratore C, et al. Soluble oligomers of amyloid-β cause changes in redox state, DNA methylation, and gene transcription by inhibiting EAAT3 mediated cysteine uptake. J Alzheimers Dis. 2013;36(1):197–209.

    CAS  PubMed  Google Scholar 

  191. Lithner CU, Lacor PN, Zhao WQ, et al. Disruption of neocortical histone H3 homeostasis by soluble Aβ: implications for Alzheimer’s disease. Neurobiol Aging. 2013;34(9):2081–90.

    Article  CAS  PubMed  Google Scholar 

  192. Gu X, Sun J, Li S, et al. Oxidative stress induces DNA demethylation and histone acetylation in SH-SY5Y cells: potential epigenetic mechanisms in gene transcription in Aβ production. Neurobiol Aging. 2013;34(4):1069–79.

    Article  CAS  PubMed  Google Scholar 

  193. Marques SC, Lemos R, Ferreiro E, et al. Epigenetic regulation of BACE1 in Alzheimer’s disease patients and in transgenic mice. Neuroscience. 2012;220:256–66.

    Article  CAS  PubMed  Google Scholar 

  194. Hwang YJ, Han D, Kim KY, et al. ESET methylates UBF at K232/254 and regulates nucleolar heterochromatin plasticity and rDNA transcription. Nucleic Acids Res. 2014;42(3):1628–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Steffan JS, Pallos J, Poelman M, et al. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature. 2001;413:739–43.

    Article  CAS  PubMed  Google Scholar 

  196. Lee J, Hwang YJ, Boo JH, et al. Dysregulation of upstream binding factor-1 acetylation at K352 is linked to impaired ribosomal DNA transcription in Huntington’s disease. Cell Death Differ. 2011;18(11):1726–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Lee J, Hwang YJ, Ryu H, et al. Nucleolar dysfunction in Huntington’s disease. Biochim Biophys Acta. 2014;1842(6):785–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Giralt A, Puigdellívol M, Carretón O, et al. Long-term memory deficits in Huntington’s disease are associated with reduced CBP histone acetylase activity. Hum Mol Genet. 2012;21(6):1203–16.

    Article  CAS  PubMed  Google Scholar 

  199. Martin LJ, Wong M. Aberrant regulation of DNA methylation in amyotrophic lateral sclerosis: a new target of disease mechanisms. Neurotherapeutics. 2013;10(4):722–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Xi Z, Rainero I, Rubino E, et al. Hypermethylation of the CpG-island near the C9orf72 G4C2-repeat expansion in FTLD patients. Hum Mol Genet. 2014;23(21):5630–7.

    Article  PubMed  Google Scholar 

  201. Belzil VV, Bauer PO, Prudencio M, et al. Reduced C9orf72 gene expression in c9FTD/ALS is caused by histone trimethylation, an epigenetic event detectable in blood. Acta Neuropathol. 2013;126(6):895–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Herrup K, Li J, Chen J. The role of ATM and DNA damage in neurons: upstream and downstream connections. DNA Repair (Amst). 2013;12(8):600–4.

    Article  CAS  Google Scholar 

  203. Li J, Chen J, Ricupero CL, et al. Nuclear accumulation of HDAC4 in ATM deficiency promotes neurodegeneration in ataxia telangiectasia. Nat Med. 2012;18(5):783–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Eyupoglu IY, Hahnen E, Buslei R, et al. Suberoylanilide hydroxamic acid (SAHA) has potent anti-glioma properties in vitro, ex vivo and in vivo. J Neurochem. 2005;93(4):992–9.

    Article  PubMed  CAS  Google Scholar 

  205. An Z, Gluck CB, Choy ML, et al. Suberoylanilide hydroxamic acid limits migration and invasion of glioma cells in two and three dimensional culture. Cancer Lett. 2010;292(2):215–27.

    Article  CAS  PubMed  Google Scholar 

  206. Galanis E, Jaeckle KA, Maurer MJ, et al. Phase II trial of vorinostat in recurrent glioblastoma multiforme: a north central cancer treatment group study. J Clin Oncol. 2009;27(12):2052–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Hockly E, Richon VM, Woodman B, et al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proc Natl Acad Sci U S A. 2003;100(4):2041–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Witt O, Deubzer HE, Lodrini M, et al. Targeting histone deacetylases in neuroblastoma. Curr Pharm Design. 2009;15(4):436–47.

    Article  CAS  Google Scholar 

  209. Alaminos M, Dávalos V, Ropero S, et al. EMP3, a myelin-related gene located in the critical 19q133 region, is epigenetically silenced and exhibits features of a candidate tumor suppressor in glioma and neuroblastoma. Cancer Res. 2005;65:2565–71.

    Article  CAS  PubMed  Google Scholar 

  210. Orzan F, Pellegatta S, Poliani PL, et al. Enhancer of Zeste 2(EZH2) is up-regulated in malignant gliomas and in glioma stem-like cells. Neuropathol Appl Neurobiol. 2011;37(4):381–94.

    Article  CAS  PubMed  Google Scholar 

  211. Martinez R, Esteller M. The DNA methylome of glioblastoma multiforme. Neurobiol Dis. 2010;39(1):40–6.

    Article  CAS  PubMed  Google Scholar 

  212. Kazantsev AG, Thompson LM. Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discov. 2008;7(10):854–68.

    Article  CAS  PubMed  Google Scholar 

  213. Seung Joon L, Candice K, Victoria M, et al. Curcumin-induced HDAC inhibition and attenuation of medulloblastoma growth in vitro and in vivo. BMC Cancer. 2011;144(11):1471–2407.

    Google Scholar 

  214. Kristian Pajtler W, Christina W, Theresa T, et al. The KDM1A histone demethylase is a promising new target for the epigenetic therapy of medulloblastoma. Acta Neuropathol Commun. 2013;19(1):1.

    Google Scholar 

  215. Coppedè F. One carbon metabolism and Alzheimer’s disease: focus on epigenetics. Curr Genomics. 2010;11:246–60.

    Article  PubMed  PubMed Central  Google Scholar 

  216. Fuso A, Nicolia V, Cavallaro RA, et al. B-vitamin deprivation induces hyper homocysteinemia and brain S-adenosyl homocysteine, depletes brain S-adenosyl methionine, and enhances PS1 and BACE expression and amyloid-beta deposition in mice. Mol Cell Neurosci. 2008;37:731–46.

    Article  CAS  PubMed  Google Scholar 

  217. Fuso A, Nicolia V, Ricceri L, et al. S-adenosyl methionine reduces the progress of the Alzheimer-like features induced by B-vitamin deficiency in mice. Neurobiol Aging. 2012;33:1482.

    Article  PubMed  CAS  Google Scholar 

  218. Fuso A, Seminara L, Cavallaro RA, et al. S-adenosyl methionine/homocysteine cycle alterations modify DNA methylation status with consequent deregulation of PS1 and BACE and beta-amyloid production. Mol Cell Neurosci. 2005;28:195–204.

    Article  CAS  PubMed  Google Scholar 

  219. Tchantchou F, Graves M, Falcone D, et al. S-adenosyl methionine mediates glutathione efficacy by increasing glutathione S-transferase activity: implications for S-adenosyl methionine as a neuroprotective dietary supplement. J Alzheimers Dis. 2008;14:323–8.

    CAS  PubMed  Google Scholar 

  220. Lee S, Lemere CA, Frost JL, et al. Dietary supplementation with S-adenosyl methionine delayed amyloid-β and tau pathology in 3xTg-AD mice. J Alzheimers Dis. 2012;28:423–31.

    CAS  PubMed  Google Scholar 

  221. Ricobaraza A, Cuadrado-Tejedor M, Marco S, et al. Phenyl butyrate rescues dendritic spine loss associated with memory deficits in a mouse model of Alzheimer disease. Hippocampus. 2010;22:1040–50.

    Article  PubMed  CAS  Google Scholar 

  222. Govindarajan N, Agis-Balboa RC, Walter J, et al. Sodium butyrate improves memory function in an Alzheimer’s disease mouse model when administered at an advanced stage of disease progression. J Alzheimers Dis. 2011;26(1):187–97.

    CAS  PubMed  Google Scholar 

  223. Zhang ZY, Schluesener HJ. Oral administration of histone deacetylase inhibitor MS-275 ameliorates neuro-inflammation and cerebral amyloidosis and improves behavior in a mouse model. J Neuropathol Exp Neurol. 2013;72:178–85.

    Article  CAS  PubMed  Google Scholar 

  224. Francis YI, Fà M, Ashraf H, et al. Dysregulation of histone acetylation in the APP/PS1 mouse model of Alzheimer’s disease. J Alzheimers Dis. 2009;18:131–9.

    CAS  PubMed  Google Scholar 

  225. Outeiro TF, Kontopoulos E, Altmann SM, et al. Sirtuin2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson’s disease. Science. 2007;317:516–9.

    Article  CAS  PubMed  Google Scholar 

  226. Monti B, Gatta V, Piretti F, et al. Valproic acid is neuroprotective in the rotenone rat model of Parkinson’s disease: involvement of α-synuclein. Neurotox Res. 2010;17:130–41.

    Article  CAS  PubMed  Google Scholar 

  227. Zhu M, Li WW, Lu CZ. Histone deacetylase inhibitors prevent mitochondrial fragmentation and elicit early neuroprotection against MPP+. CNS Neurosci Ther. 2014;20:308–16.

    Article  CAS  PubMed  Google Scholar 

  228. St Laurent R, O’Brien LM, Ahmad ST. Sodium butyrate improves locomotor impairment and early mortality in a rotenone-induced Drosophila model of Parkinson’s disease. Neuroscience. 2013;246:382–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Rane P, Shields J, Heffernan M, et al. The histone deacetylase inhibitor, sodium butyrate, alleviates cognitive deficits in pre-motor stage PD. Neuropharmacology. 2012;62:2409–12.

    Article  CAS  PubMed  Google Scholar 

  230. Zhou W, Bercury K, Cummiskey J, et al. Phenyl butyrate up-regulates the DJ-1 protein and protects neurons in cell culture and in animal models of Parkinson disease. J Biol Chem. 2011;286:14941–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Suchy J, Lee S, Ahmed A, et al. Dietary supplementation with S-adenosyl methionine delays the onset of motor neuropathology in a murine model of amyotrophic lateral sclerosis. Neuromolecular Med. 2010;12:86–97.

    Article  CAS  PubMed  Google Scholar 

  232. Ryu H, Smith K, Camelo SI, et al. Sodium phenyl butyrate prolongs survival and regulates expression of anti-apoptotic genes in transgenic amyotrophic lateral sclerosis mice. J Neurochem. 2005;93:1087–98.

    Article  CAS  PubMed  Google Scholar 

  233. Cudkowicz ME, Andres PL, Macdonald SA, et al. Phase 2 study of sodium phenylbutyrate in ALS. Amyotroph Lateral Scler. 2009;10:99–106. doi:10.1080/17482960802320487.

    Article  CAS  PubMed  Google Scholar 

  234. Del Signore SJ, Amante DJ, Kim J, et al. Combined riluzole and sodium phenylbutyrate therapy in transgenic amyotrophic lateral sclerosis mice. Amyotroph Lateral Scler. 2009;10:85–94.

    Article  PubMed  CAS  Google Scholar 

  235. Feng HL, Leng Y, Ma CH, et al. Combined lithium and valproate treatment delays disease onset, reduces neurological deficits and prolongs survival in an amyotrophic lateral sclerosis mouse model. Neuroscience. 2008;155:567–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Yoo YE, Ko CP. Treatment with trichostatin A initiated after disease on set delays disease progression and increases survival in a mouse model of amyotrophic lateral sclerosis. Exp Neurol. 2011;231:147–59.

    Article  CAS  PubMed  Google Scholar 

  237. Sugai F, Yamamoto Y, Miyaguchi K, et al. Benefit of valproic acid in suppressing disease progression of ALS model mice. Eur J Neurosci. 2004;20:3179–83.

    Article  PubMed  Google Scholar 

  238. Steffan JS, Kazantsev A, Spasic-Boskovic O, et al. The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc Natl Acad Sci U S A. 2000;97:6763–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Jiang H, Poirier MA, Liang Y, et al. Depletion of CBP is directly linked with cellular toxicity caused by mutant huntingtin. Neurobiol Dis. 2006;23:543–51.

    Article  CAS  PubMed  Google Scholar 

  240. Jia H, Kast RJ, Steffan JS, et al. Selective histone deacetylase (HDAC) inhibition imparts beneficial effects in Huntington’s disease mice: implications for the ubiquitin-proteasomal and auto-phagy systems. Hum Mol Genet. 2012;21:5280–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Chopra V, Quinti L, Kim J, et al. The sirtuin2 inhibitor AK-7 is neuroprotective in Huntington’s disease mouse models. Cell Rep. 2012;2:1492–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pravir Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tripathi, A., Sharma, R., Kejriwal, N., Ambasta, R.K., Kumar, P. (2016). Epigenetic Post transcriptional Mutation in Neuro-Oncology. In: Mishra, M., Bishnupuri, K. (eds) Epigenetic Advancements in Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-24951-3_8

Download citation

Publish with us

Policies and ethics