Skip to main content

Epigenetics and Angiogenesis in Cancer

  • Chapter
  • First Online:

Abstract

Cancer is a most common and lethal disease in which certain cells in our body grow in an uncontrolled way. The growth of new vascular network is essential for sustained growth of tumor to adequately supply nutrients and oxygen. These requirements are mainly fulfilled by formation of fresh blood vessels. Angiogenesis plays a pivotal role in various physiological conditions within the human body, including, embryonic development and tissue repair after trauma or surgery. Angiogenesis is a hallmark feature of cancer, inflammatory diseases, and wound healing. Different growth factors and vascular genes mediate the angiogenic process, which is regulated by epigenetic states of gene especially through small RNAs. Epigenetic modification of tumor cells includes diverse reinforcing and converging signals, including histone modifications, DNA methylation, and non-coding RNAs. This chapter is focused on highlighting the role of angiogenesis in vasculogenesis process and epigenetic modifications in cancer progression. Moreover, we reported the importance of various angiogenic factors and their epigenetic modifications together with a novel therapeutic window towards the treatment of most common cancers using epigenetic regulators.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev. 2009;23:781–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Baylin SB, Jones PA. A decade of exploring the cancer epigenome—biological and translational implications. Nat Rev Cancer. 2011;11:726–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wu H, Zhang Y. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev. 2011;25:2436–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E, Buchou T, Cheng Z, Rousseaux S, Rajagopal N, et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell. 2011;146:1016–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mikko PT, Seppo YH. Epigenetic regulation of key vascular genes and growth factors. Cardiovasc Res. 2011;90:441–6.

    Article  CAS  Google Scholar 

  6. Zhu X, Wetta H. Genetics and epigenetics in tumorigenesis: acting separately or linked? Austin J Clin Med. 2014;1:1016.

    Google Scholar 

  7. Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 1992;69:915–26.

    Article  CAS  PubMed  Google Scholar 

  8. Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99:247–57.

    Article  CAS  PubMed  Google Scholar 

  9. Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 2006;31:89–97.

    Article  CAS  PubMed  Google Scholar 

  10. Patel JP, Gonen M, Figueroa ME, Fernandez H, Sun Z, Racevskis J, Van Vlierberghe P, Dolgalev I, Thomas S, Aminova O, et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med. 2012;366:1079–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Allfrey VG, Faulkner R, Mirsky AE. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci U S A. 1964;51:786–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell. 2007;128:669–81.

    Article  CAS  PubMed  Google Scholar 

  13. Mack GS. Epigenetic cancer therapy makes headway. J Natl Cancer Inst. 2006;98:1443–4.

    Article  PubMed  Google Scholar 

  14. Ballestar E, Paz MF, Valle L, et al. Methyl-CpG binding proteins identify novel sites of epigenetic inactivation in human cancer. EMBO J. 2003;22:6335–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128:683–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fraga MF, Ballestar E, Villar-Garea A, et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet. 2005;37:391–400.

    Article  CAS  PubMed  Google Scholar 

  17. Pogribny IP, Ross SA, Tryndyak VP, Pogribna M, Poirier LA, Karpinets TV. Histone H3 lysine 9 and H4 lysine 20 trimethylation and the expression of Suv4-20h2 and Suv-39h1 histone methyltransferases in hepatocarcinogenesis induced by methyl deficiency in rats. Carcinogenesis. 2006;27:1180–6.

    Article  CAS  PubMed  Google Scholar 

  18. Tryndyak VP, Kovalchuk O, Pogribny IP. Loss of DNA methylation and histone H4 lysine 20 trimethylation in human breast cancer cells is associated with aberrant expression of DNA methyltransferase 1, Suv4-20h2 histone methyltransferase and methyl-binding proteins. Cancer Biol Ther. 2006;5:65–70.

    Article  CAS  PubMed  Google Scholar 

  19. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5:522–31.

    Article  CAS  PubMed  Google Scholar 

  20. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–66.

    Article  CAS  PubMed  Google Scholar 

  21. Lujambio A, Ropero S, Ballestar E, et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res. 2007;67:1424–9.

    Article  CAS  PubMed  Google Scholar 

  22. Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer. 2004;4:143–53.

    Article  CAS  PubMed  Google Scholar 

  23. Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, Jia M, Shepherd R, Leung K, Menzies A, et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 2011;39(Database issue):D945–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Morin RD, Mendez-Lago M, Mungall AJ, Goya R, Mungall KL, Corbett RD, Johnson NA, Severson TM, Chiu R, Field M, et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature. 2011;476:298–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. van Haaften G, Dalgliesh GL, Davies H, Chen L, Bignell G, Greenman C, Edkins S, Hardy C, O’Meara S, Teague J, et al. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat Genet. 2009;41:521–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Easwaran H, Johnstone SE, Van Neste L, Ohm J, Mosbruger T, Wang Q, Aryee MJ, Joyce P, Ahuja N, Weisenberger D, et al. A DNA hypermethylation module for the stem/progenitor cell signature of cancer. Genome Res. 2012;22:837–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell. 2006;125:315–26.

    Article  CAS  PubMed  Google Scholar 

  28. Berman BP, Weisenberger DJ, Aman JF, Hinoue T, Ramjan Z, Liu Y, Noushmehr H, Lange CP, van Dijk CM, Tollenaar RA, et al. Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nat Genet. 2012;44:40–6.

    Article  CAS  PubMed Central  Google Scholar 

  29. Minucci S, Pelicci PG. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer. 2006;6:38–51.

    Article  CAS  PubMed  Google Scholar 

  30. Dimova I, Popivanov G, Djonov V. Angiogenesis in cancer general pathways and their therapeutic implications. J BUON. 2014;19:15–21.

    PubMed  Google Scholar 

  31. Flamme I, Frölich T, Risau W. Molecular mechanisms of vasculogenesis and embryonic angiogenesis. J Cell Physiol. 1997;173:206–10.

    Article  CAS  PubMed  Google Scholar 

  32. Katoh M. Therapeutics targeting angiogenesis: genetics and epigenetics, extracellular miRNAs and signaling networks. Int J Mol Med. 2013;32:763–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu J, Deutsch U, Jeong J, Lobe CG. Constitutive notch signaling in adult transgenic mice inhibits bFGF-induced angiogenesis and blocks ovarian follicle development. Genesis. 2014;52:809–16.

    Article  CAS  PubMed  Google Scholar 

  34. Liu Z, Fan F, Wang A, Zheng S, Lu Y. Dll4-Notch signaling in regulation of tumor angiogenesis. J Cancer Res Clin Oncol. 2014;140:525–36.

    Article  CAS  PubMed  Google Scholar 

  35. Risau W, Flamme I. Vasculogenesis. Annu Rev Cell Dev Biol. 1995;11:73–91.

    Article  CAS  PubMed  Google Scholar 

  36. Yoo SY, Kwon SM. Angiogenesis and its therapeutic opportunities (2013). Mediators Inflamm. 2013;2013:127170.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Eilken HM, Adams RH. Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr Opin Cell Biol. 2010;22:617–25.

    Article  CAS  PubMed  Google Scholar 

  38. Ribatti D, Crivellato E. “Sprouting angiogenesis”, a reappraisal. Dev Biol. 2012;372:157–65.

    Article  CAS  PubMed  Google Scholar 

  39. Burri PH, Hlushchuk R, Djonov V. Intussusceptive angiogenesis: its emergence, its characteristics, and its significance. Dev Dyn. 2004;231:474–88.

    Article  PubMed  Google Scholar 

  40. De Spiegelaere W, Casteleyn C, Van den Broeck W, Plendl J, Bahramsoltani M, Simoens P, Djonov V, Cornillie P. Intussusceptive angiogenesis: a biologically relevant form of angiogenesis. J Vasc Res. 2012;49:390–404.

    Article  PubMed  Google Scholar 

  41. Deanfield JE, Halcox JP, Rabelink TJ. Endothelial function and dysfunction: testing and clinical relevance. Circulation. 2007;115:1285–95.

    PubMed  Google Scholar 

  42. Michiels C. Endothelial cell functions. J Cell Physiol. 2003;196:430–43.

    Article  CAS  PubMed  Google Scholar 

  43. Sumpio BE, Riley JT, Dardik A. Cells in focus: endothelial cell. Int J Biochem Cell Biol. 2002;34:1508–12.

    Article  CAS  PubMed  Google Scholar 

  44. Bautch VL. Endothelial cells form a phalanx to block tumor metastasis. Cell. 2009;136:810–2.

    Article  CAS  PubMed  Google Scholar 

  45. Blancas AA, Wong LE, Glaser DE, McCloskey KE. Specialized tip/stalk-like and phalanx-like endothelial cells from embryonic stem cells. Stem Cells Dev. 2013;22:1398–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473:298–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Duffy AM, Bouchier-Hayes DJ, Harmey JH (2000). Vascular endothelial growth factor (VEGF) and its role in non-endothelial cells: autocrine signalling by VEGF. In: Madame Curie bioscience database [Internet]. Austin: Landes Bioscience.

    Google Scholar 

  48. Moreira IS, Fernandes PA, Ramos MJ. Vascular endothelial growth factor (VEGF) inhibition critical review. Anticancer Agents Med Chem. 2007;7:223–45.

    Article  CAS  PubMed  Google Scholar 

  49. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 1999;13:9–22.

    CAS  PubMed  Google Scholar 

  50. Shibuya M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes Cancer. 2011;2:1097–105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Alvarez RH, Kantarjian HM, Cortes JE. Biology of platelet-derived growth factor and its involvement in disease. Mayo Clin Proc. 2006;81:1241–57.

    Article  CAS  PubMed  Google Scholar 

  52. Demoulin JB, Montano-Almendras CP. Platelet-derived growth factors and their receptors in normal and malignant hematopoiesis. Am J Blood Res. 2012;2:44–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Raica M, Cimpean AM. Platelet-derived growth factor (PDGF)/PDGF receptors (PDGFR) axis as target for antitumor and antiangiogenic therapy. Pharmaceuticals. 2010;3:572–99.

    Article  CAS  PubMed Central  Google Scholar 

  54. Schmidt MB, Chen EH, Lynch SE. A review of the effects of insulin-like growth factor and platelet derived growth factor on in vivo cartilage healing and repair. Osteoarthritis Cartilage. 2006;14:403–12.

    Article  CAS  PubMed  Google Scholar 

  55. Tennant M, McGeachie JK. Platelet-derived growth factor and its role in atherogenesis: a brief review. Aust N Z J Surg. 1991;61:482–8.

    Article  CAS  PubMed  Google Scholar 

  56. Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev. 2008;22:1276–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Itoh N, Ornitz DM. Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease. J Biochem. 2011;149:121–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010;10:116–29.

    Article  CAS  PubMed  Google Scholar 

  59. Risau W. Mechanisms of angiogenesis. Nature. 1997;386:671–4.

    Article  CAS  PubMed  Google Scholar 

  60. Adair TH, Montani JP. Overview of angiogenesis. San Rafael: Morgan & Claypool Life Sciences; 2010.

    Google Scholar 

  61. Bisht M, Dhasmana DC, Bist SS. Angiogenesis: future of pharmacological modulation. Indian J Pharmacol. 2010;42:2–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ucuzian AA, Gassman AA, East AT, Greisler HP. Molecular mediators of angiogenesis. J Burn Care Res. 2010;31:158–75.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Smits M, Mir SE, Nilsson RJ, et al. Down-regulation of miR-101 in endothelial cells promotes blood vessel formation through reduced repression of EZH2. PLoS One. 2011;6:e16282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fagiani E, Christofori G. Angiopoietins in angiogenesis. Cancer Lett. 2013;328:18–26.

    Article  CAS  PubMed  Google Scholar 

  65. Hato T, Tabata M, Oike Y. The role of angiopoietin-like proteins in angiogenesis and metabolism. Trends Cardiovasc Med. 2008;18:6–14.

    Article  CAS  PubMed  Google Scholar 

  66. Hansen TM, Singh H, Tahir TA, Brindle NPJ. Effects of angiopoietins-1 and -2 on the receptor tyrosine kinase Tie2 are differentially regulated at the endothelial cell surface. Cell Signal. 2010;22:527–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Boras E, Slevin M, Alexander MY, Aljohi A, Gilmore W, Ashworth J, et al. Monomeric C-reactive protein and Notch-3 co-operatively increase angiogenesis through PI3K signalling pathway. Cytokine. 2014;69:165–79.

    Article  CAS  PubMed  Google Scholar 

  68. Hu GH, Liu H, Lai P, Guo ZF, Xu L, Yao XD, et al. Delta-like ligand 4 (Dll4) predicts the prognosis of clear cell renal cell carcinoma, and anti-Dll4 suppresses tumor growth in vivo. Int J Clin Exp Pathol. 2014;7:2143–52.

    PubMed  PubMed Central  Google Scholar 

  69. Murtas D, Piras F, Minerba L, Maxia C, Ferreli C, Demurtas P, et al. Activated Notch1 expression is associated with angiogenesis in cutaneous melanoma. Clin Exp Med. 2014;15(3):351–60.

    Article  PubMed  CAS  Google Scholar 

  70. Siekmann AF, Lawson ND. Notch signalling and the regulation of angiogenesis. Cell Adh Migr. 2007;1:104–6.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Zhang E, Feng X, Liu F, Zhang P, Liang J, Tang X. Roles of PI3K/Akt and c-jun signaling pathways in human papillomavirus type 16 oncoprotein-induced HIF-1α, VEGF, and IL-8 expression and in vitro angiogenesis in non-small cell lung cancer cells. PLoS One. 2014;9:e103440.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Zhang JP, Li N, Bai WZ, Qiu XC, Ma BA, Zhou Y, et al. Notch ligand Delta-like 1 promotes the metastasis of melanoma by enhancing tumor adhesion. Braz J Med Biol. 2014;47:299–306.

    Article  CAS  Google Scholar 

  73. Deng J, Liu X, Rong L, Ni C, Li X, Yang W, et al. IFNγ-responsiveness of endothelial cells leads to efficient angiostasis in tumors involving down-regulation of Dll4. J Pathol. 2014;233:170–82.

    Article  CAS  PubMed  Google Scholar 

  74. Guichet PO, Guelfi S, Teigell M, Hoppe L, Bakalara N, Bauchet L, et al. Notch1 stimulation induces a vascularization switch with pericyte-like cell differentiation of glioblastoma stem cells. Stem Cells. 2015;33:21–34.

    Article  CAS  PubMed  Google Scholar 

  75. Harjes U, Bridges E, McIntyre A, Fielding BA, Harris AL. Fatty acid binding protein 4, a point of convergence for angiogenic and metabolic signalling pathways in endothelial cells. J Biol Chem. 2014;289:23168–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lee C, Jia Z, Rahmatpanah F, Zhang Q, Zi X, McClelland M, Mercola D. Role of the adjacent stroma cells in prostate cancer development and progression: synergy between TGF-β and IGF signaling. Biomed Res Int. 2014;2014:502093.

    PubMed  PubMed Central  Google Scholar 

  77. Lee SH, Lee S, Yang H, Song S, Kim K, Saunders TL, et al. Notch pathway targets proangiogenic regulator sox17 to restrict angiogenesis. Circ Res. 2014;115:215–26.

    Article  CAS  PubMed  Google Scholar 

  78. Takeuchi K, Yanai R, Kumase F, Morizane Y, Suzuki J, Kayama M, et al. EGF-like-domain-7 is required for VEGF-induced Akt/ERK activation and vascular tube formation in an ex vivo angiogenesis assay. PLoS One. 2014;9:e91849.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Hale AT, Tian H, Anih E, Recio FO, Shatat MA, Johnson T, et al. Endothelial Kruppel-like factor 4 regulates angiogenesis and the Notch signaling pathway. J Biol Chem. 2014;289:12016–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Patenaude A, Fuller M, Chang L, Wong F, Paliouras G, Shaw R, et al. Endothelial-specific Notch blockade inhibits vascular function and tumor growth through an eNOS-dependent mechanism. Cancer Res. 2014;74:2402–11.

    Article  CAS  PubMed  Google Scholar 

  81. Weis SM, Cheresh DA. αV integrins in angiogenesis and cancer. Cold Spring Harb Perspect Med. 2011;1:a006478.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Dejana E. The role of wnt signaling in physiological and pathological angiogenesis. Circ Res. 2010;107:943–52.

    Article  CAS  PubMed  Google Scholar 

  83. Gore AV, Swift MR, Cha YR, Lo B, McKinney MC, Li W, Castranova D, Davis A, Mukouyama YS, Weinstein BM. Rspo1/Wnt signaling promotes angiogenesis via Vegfc/Vegfr3. Development. 2011;138:4875–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zerlin M, Julius MA, Kitajewski J. Wnt/Frizzled signaling in angiogenesis. Angiogenesis. 2008;11:63–9.

    Article  CAS  PubMed  Google Scholar 

  85. Pola R, Ling LE, Silver M, Corbley MJ, Kearney M, Blake Pepinsky R, Shapiro R, Taylor FR, Baker DP, Asahara T, Isner JM. The morphogen Sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors. Nat Med. 2001;7:706–11.

    Article  CAS  PubMed  Google Scholar 

  86. Renault MA, Roncalli J, Tongers J, Thorne T, Klyachko E, Misener S, Volpert OV, Mehta S, Burg A, Luedemann C, Qin G, Kishore R, Losordo DW. Sonic hedgehog induces angiogenesis via Rho kinase-dependent signaling in endothelial cells. J Mol Cell Cardiol. 2010;49:490–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Virmani AK, Rathi A, Sathyanarayana UG, et al. Aberrant methylation of the adenomatous polyposis coli (APC) gene promoter 1A in breast and lung carcinomas. Clin Cancer Res. 2001;7:1998–2004.

    CAS  PubMed  Google Scholar 

  88. Kawakami K, Brabender J, Lord RV, et al. Hypermethylated APC DNA in plasma and prognosis of patients with esophageal adenocarcinoma. J Natl Cancer Inst. 2000;92:1805–11.

    Article  CAS  PubMed  Google Scholar 

  89. Dobrovic A, Simpfendorfer D. Methylation of the BRCA1 gene in sporadic breast cancer. Cancer Res. 1997;57:3347–50.

    CAS  PubMed  Google Scholar 

  90. Chan KY, Ozcelik H, Cheung AN, et al. Epigenetic factors controlling the BRCA1 and BRCA2 genes in sporadic ovarian cancer. Cancer Res. 2002;62:4151–6.

    CAS  PubMed  Google Scholar 

  91. Sanchez-Cespedes M, Esteller M, Wu L, et al. Gene promoter hypermethylation in tumors and serum of head and neck cancer patients. Cancer Res. 2000;60:892–5.

    CAS  PubMed  Google Scholar 

  92. Villuendas R, Sanchez-Beato M, Martinez JC, et al. Loss of p16/INK4A protein expression in non-Hodgkin’s lymphomas is a frequent finding associated with tumor progression. Am J Pathol. 1998;153:887–997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Evron E, Dooley WC, Umbricht CB, et al. Detection of breast cancer cells in ductal lavage fluid by methylation-specific PCR. Lancet. 2001;357:1335–6.

    Article  CAS  PubMed  Google Scholar 

  94. Harden SV, Tokumaru Y, Westra WH, et al. Gene promoter hypermethylation in tumors and lymph nodes of stage I lung cancer patients. Clin Cancer Res. 2003;9:1370–5.

    CAS  PubMed  Google Scholar 

  95. Graff JR, Greenberg VE, Herman JG, et al. Distinct patterns of E-cadherin CpG island methylation in papillary, follicular, Hurthle’s cell, and poorly differentiated human thyroid carcinoma. Cancer Res. 1998;58:2063–6.

    CAS  PubMed  Google Scholar 

  96. Waki T, Tamura G, Tsuchiya T, et al. Promoter methylation status of E-cadherin, hMLH1, and p16 genes in nonneoplastic gastric epithelia. Am J Pathol. 2002;161:399–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yang X, Yan L, Davidson NE. DNA methylation in breast cancer. Endocr Relat Cancer. 2001;8:115–27.

    Article  CAS  PubMed  Google Scholar 

  98. Li LC, Chui R, Nakajima K, et al. Frequent methylation of estrogen receptor in prostate cancer: correlation with tumor progression. Cancer Res. 2000;60:702–6.

    CAS  PubMed  Google Scholar 

  99. Lee WH, Morton RA, Epstein JI, et al. Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc Natl Acad Sci U S A. 1994;91:11733–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Esteller M, Corn PG, Urena JM, et al. Inactivation of glutathione S-transferase P1 gene by promoter hypermethylation in human neoplasia. Cancer Res. 1998;58:4515–8.

    CAS  PubMed  Google Scholar 

  101. Kondo E, Furukawa T, Yoshinaga K, et al. Not hMSH2 but hMLH1 is frequently silenced by hypermethylation in endometrial cancer but rarely silenced in pancreatic cancer with microsatellite instability. Int J Oncol. 2000;17:535–41.

    CAS  PubMed  Google Scholar 

  102. Esteller M, Garcia-Foncillas J, Andion E, et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med. 2000;343:1350–4.

    Article  CAS  PubMed  Google Scholar 

  103. Dominguez G, Carballido J, Silva J, et al. P14ARF promoter hypermethylation in plasma DNA as an indicator of disease recurrence in bladder cancer patients. Clin Cancer Res. 2002;8:980–5.

    CAS  PubMed  Google Scholar 

  104. Melki JR, Vincent PC, Clark SJ. Concurrent DNA hypermethylation of multiple genes in acute myeloid leukemia. Cancer Res. 1999;59:3730–40.

    CAS  PubMed  Google Scholar 

  105. Garcia MJ, Martinez-Delgado B, Cebrian A, et al. Different incidence and pattern of p15INK4b and p16INK4a promoter region hypermethylation in Hodgkin’s and CD30-Positive non-Hodgkin’s lymphomas. Am J Pathol. 2002;161:1007–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zou HZ, Yu BM, Wang ZW, et al. Detection of aberrant p16 methylation in the serum of colorectal cancer patients. Clin Cancer Res. 2002;8:188–91.

    PubMed  Google Scholar 

  107. Silva JM, Dominguez G, Garcia JM, et al. Presence of tumor DNA in plasma of breast cancer patients: clinicopathological correlations. Cancer Res. 1999;59:3251–6.

    CAS  PubMed  Google Scholar 

  108. Morrissey C, Martinez A, Zatyka M, et al. Epigenetic inactivation of the RASSF1A 3p21.3 tumor suppressor gene in both clear cell and papillary renal cell carcinoma. Cancer Res. 2001;61:7277–81.

    CAS  PubMed  Google Scholar 

  109. Kwong J, Lo KW, To KF, et al. Promoter hypermethylation of multiple genes in nasopharyngeal carcinoma. Clin Cancer Res. 2002;8:131–7.

    CAS  PubMed  Google Scholar 

  110. Gonzalez-Gomez P, Bello MJ, Alonso ME, et al. CpG island methylation status and mutation analysis of the RB1 gene essential promoter region and protein-binding pocket domain in nervous system tumors. Br J Cancer. 2003;88:109–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Pietersen AM, Horlings HM, Hauptmann M, Langerod A, Ajouaou A, Cornelissen-Steijger P, Wessels LF, Jonkers J, van de Vijver MJ, van Lohuizen M. EZH2 and BMI1 inversely correlate with prognosis and TP53 mutation in breast cancer. Breast Cancer Res. 2008;10:R109.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Kim JH, Yoon SY, Jeong SH, Kim SY, Moon SK, Joo JH, Lee Y, Choe IS, Kim JW. Overexpression of Bmi-1 oncoprotein correlates with axillary lymph node metastases in invasive ductal breast cancer. Breast. 2004;13:383–8.

    Article  PubMed  Google Scholar 

  113. Chang MJ, Wu H, Achille NJ, Reisenauer MR, Chou CW, Zeleznik-Le NJ, Hemenway CS, Zhang W. Histone H3 lysine 79 methyltransferase Dot1 is required for immortalization by MLL oncogenes. Cancer Res. 2010;70:10234–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Tatum D, Li S. Evidence that the histone methyltransferase Dot1 mediates global genomic repair by methylating histone H3 on lysine 79. J Biol Chem. 2011;286:17530–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kleer CC, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA, Ghosh D, Sewalt RG, Otte AP, Hayes DF, Sabel MS, Livant D, Weiss SJ, Rubin MA, Chinnaiyan AM. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci U S A. 2003;100:11606–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Suvà ML, Riggi N, Janiszewska M, Radovanovic I, Provero P, Stehle JC, Baumer K, Le Bitoux MA, Marino D, Cironi L. EZH2 is essential for glioblastoma cancer stem cell maintenance. Cancer Res. 2009;69:9211.

    Article  PubMed  CAS  Google Scholar 

  117. Tapia C, Zlobec I, Schneider S, Kilic E, Güth U, Bubendorf L, Kim S. Deletion of the inhibitor of growth 4 (ING4) tumor suppressor gene is prevalent in human epidermal growth factor 2 (HER2)-positive breast cancer. Hum Pathol. 2011;42:983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Gunduz M, Nagatsuka H, Demircan K, Gunduz E, Cengiz B, Ouchida M, Tsujigiwa H, Yamachika E, Fukushima K, Beder L. Frequent deletion and down-regulation of ING4, a candidate tumor suppressor gene at 12p13, in head and neck squamous cell carcinomas. Gene. 2005;356:109–17.

    Article  CAS  PubMed  Google Scholar 

  119. Liu G, Bollig-Fischer A, Kreike B, van de Vijver MJ, Abrams J, Ethier SP, Yang ZQ. Genomic amplification and oncogenic properties of the GASC1 histone demethylase gene in breast cancer. Oncogene. 2009;28:4491–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Vinatzer U, Gollinger M, Mullauer L, Raderer M, Chott A, Streubel B. Mucosa-associated lymphoid tissue lymphoma: novel translocations including rearrangements of ODZ2, JMJD2C, and CNN3. Clin Cancer Res. 2008;14:6426–31.

    Article  CAS  PubMed  Google Scholar 

  121. Xiang Y, Zhu Z, Han G, Lin H, Xu L, Chen CD. JMJD3 is a histone H3K27 demethylase. Cell Res. 2007;17:850–7.

    Article  CAS  PubMed  Google Scholar 

  122. Lim S, Janzer A, Becker A, Zimmer A, Schule R, Buettner R, Kirfel J. Lysine-specific demethylase 1 (LSD1) is highly expressed in ER-negative breast cancers and a biomarker predicting aggressive biology. Carcinogenesis. 2010;31:512–20.

    Article  CAS  PubMed  Google Scholar 

  123. Wang Y, Zhang H, Chen Y, Sun Y, Yang F, Yu W, Liang J, Sun L, Yang X, Shi L. LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell. 2009;138:660–72.

    Article  CAS  PubMed  Google Scholar 

  124. Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD, Sallan SE, Lander ES, Golub TR, Korsmeyer SJ. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet. 2002;30:41–7.

    Article  CAS  PubMed  Google Scholar 

  125. Corral J, Lavenir I, Impey H, Warren AJ, Forster A, Larson TA, Bell S, McKenzie AN, King G, Rabbitts TH. An Mll-AF9 fusion gene made by homologous recombination causes acute leukemia in chimeric mice: a method to create fusion oncogenes. Cell. 1996;85:853–61.

    Article  CAS  PubMed  Google Scholar 

  126. Taketani T, Taki T, Nakamura H, Taniwaki M, Masuda J, Hayashi Y. NUP98-NSD3 fusion gene in radiation-associated myelodysplastic syndrome with t(8;11)(p11;p15) and expression pattern of NSD family genes. Cancer Genet Cytogenet. 2009;190:108–12.

    Article  CAS  PubMed  Google Scholar 

  127. Wang GG, Allis CD, Chi P. Chromatin remodeling and cancer, part I: covalent histone modifications. Trends Mol Med. 2007;13:363–72.

    Article  CAS  PubMed  Google Scholar 

  128. Ceol CJ, Houvras Y, Jane-Valbuena J, Bilodeau S, Orlando DA, Battisti V, Fritsch L, Lin WM, Hollmann TJ, Ferré F. The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset. Nature. 2011;471:513–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Balasubramanyam K, Swaminathan V, Ranganathan A, Kundu TK. Small molecule modulators of histone acetyltransferase p300. J Biol Chem. 2003;278:19134–40.

    Article  CAS  PubMed  Google Scholar 

  130. Sun Y, Jiang X, Chen S, Price BD. Inhibition of histone acetyltransferase activity by anacardic acid sensitizes tumor cells to ionizing radiation. FEBS Lett. 2006;580:4353–6.

    Article  CAS  PubMed  Google Scholar 

  131. Candido EP, Reeves R, Davie JR. Sodium butyrate inhibits histone deacetylation in cultured cells. Cell. 1978;14:105–13.

    Article  CAS  PubMed  Google Scholar 

  132. Sealy L, Chalkley R. The effect of sodium butyrate on histone modification. Cell. 1978;14:115–21.

    Article  CAS  PubMed  Google Scholar 

  133. Heltweg B, Gatbonton T, Schuler AD, Posakony J, Li H, Goehle S, Kollipara R, Depinho RA, Gu Y, Simon JA, Bedalov A. Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes. Cancer Res. 2006;66:4368–77.

    Article  CAS  PubMed  Google Scholar 

  134. Balasubramanyam K, Varier RA, Altaf M, Swaminathan V, Siddappa NB, Ranga U, Kundu TK. Curcumin, a novel p300/CREB-binding proteinspecific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J Biol Chem. 2004;279:51163–71.

    Article  CAS  PubMed  Google Scholar 

  135. Balasubramanyam K, Altaf M, Varier RA, Swaminathan V, Ravindran A, Sadhale PP, Kundu TK. Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression. J Biol Chem. 2004;279:33716–26.

    Article  CAS  PubMed  Google Scholar 

  136. Kang J, Chen J, Shi Y, Jia J, Zhang Y. Curcumin induced histone hypoacetylation: the role of reactive oxygen species. Biochem Pharmacol. 2005;69:1205–13.

    Article  CAS  PubMed  Google Scholar 

  137. Bianchini F, Vainio H. Allium vegetables and organosulfur compounds: do they help prevent cancer? Environ Health Perspect. 2001;109:893–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Nian H, Delage B, Ho E, Dashwood RH. Modulation of histone deacetylase activity by dietary isothiocyanates and allyl sulfides: studies with sulforaphane and garlic organosulfur compounds. Environ Mol Mutagen. 2009;50:213–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Olaharski AJ, Rine J, Marshall BL, Babiarz J, Zhang L, Verdin E, Smith MT. The flavoring agent dihydrocoumarin reverses epigenetic silencing and inhibits sirtuin deacetylases. PLoS Genet. 2005;1:e77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Li Y, Li X, Guo B. Chemopreventive agent 3,3′-diindolylmethane selectively induces proteasomal degradation of class I histone deacetylases. Cancer Res. 2010;70:646–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Nandakumar V, Vaid M, Katiyar SK. (−)-Epigallocatechin-3-gallate reactivates silenced tumor suppressor genes, Cip1/p21 and p16INK4a, by reducing DNA methylation and increasing histones acetylation in human skin cancer cells. Carcinogenesis. 2011;32:537–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Padhye S, Ahmad A, Oswal N, Sarkar FH. Emerging role of Garcinol, the antioxidant chalcone from Garcinia indica Choisy and its synthetic analogs. J Hematol Oncol. 2009;2:38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Kikuno N, Shiina H, Urakami S, Kawamoto K, Hirata H, Tanaka Y, Majid S, Igawa M, Dahiya R. Genistein mediated histone acetylation and demethylation activates tumor suppressor genes in prostate cancer cells. Int J Cancer. 2008;123:552–60.

    Article  CAS  PubMed  Google Scholar 

  144. Myzak MC, Dashwood WM, Orner GA, Ho E, Dashwood RH. Sulforaphane inhibits histone deacetylase in vivo and suppresses tumorigenesis in Apc-minus mice. FASEB J. 2006;20:506–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Presta LG, Chen H, O’Connor SJ, Chisholm V, Meng YG, Krummen L, Winkler M, Ferrara N. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res. 1997;57:4593–9.

    CAS  PubMed  Google Scholar 

  146. Chen PC, Cheng HC, Wang J, Wang SW, Tai HC, Lin CW, Tang CH. Prostate cancer-derived CCN3 induces M2 macrophage infiltration and contributes to angiogenesis in prostate cancer microenvironment. Oncotarget. 2014;5:1595–608.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Jeong E, Koo JE, Yeon SH, Kwak MK, Hwang DH, Lee JY. PPARδ deficiency disrupts hypoxia-mediated tumorigenic potential of colon cancer cells. Mol Carcinog. 2014;53:926–37.

    Article  CAS  PubMed  Google Scholar 

  148. Abolhassani A, Riazi GH, Azizi E, Amanpour S, Muhammadnejad S, Haddadi M, Zekri A, Shirkoohi R. FGF10: Type III epithelial mesenchymal transition and invasion in breast cancer cell lines. J Cancer. 2014;5:537–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Salgia R. Fibroblast growth factor signaling and inhibition in non-small cell lung cancer and their role in squamous cell tumors. Cancer Med. 2014;3:681–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Corn PG, Wang F, McKeehan WL, Navone N. Targeting fibroblast growth factor pathways in prostate cancer. Clin Cancer Res. 2013;19:5856–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Schulze D, Plohmann P, Höbel S, Aigner A. Anti-tumor effects of fibroblast growth factor-binding protein (FGF-BP) knockdown in colon carcinoma. Mol Cancer. 2011;10:144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ren W, Liu Y, Wan S, Fei C, Wang W, Chen Y, Zhang Z, Wang T, Wang J, Zhou L, Weng Y, He T, Zhang Y. BMP9 inhibits proliferation and metastasis of HER2-positive SK-BR-3 breast cancer cells through ERK1/2 and PI3K/AKT pathways. PLoS One. 2014;9:e96816.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Wang LK, Hsiao TH, Hong TM, Chen HY, Kao SH, Wang WL, Yu SL, Lin CW, Yang PC. MicroRNA-133a suppresses multiple oncogenic membrane receptors and cell invasion in non-small cell lung carcinoma. PLoS One. 2014;9:e96765.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Xu Y, Pasche B. TGF-beta signaling alterations and susceptibility to colorectal cancer. Hum Mol Genet. 2007;1:R14–20.

    Article  CAS  Google Scholar 

  155. Li H, Zhang B, Liu Y, Yin C. EBP50 inhibits the migration and invasion of human breast cancer cells via LIMK/cofilin and the PI3K/Akt/mTOR/MMP signalling pathway. Med Oncol. 2014;31:162.

    Article  PubMed  CAS  Google Scholar 

  156. Scagliotti GV, Selvaggi G, Novello S, Hirsch FR. The biology of epidermal growth factor receptor in lung cancer. Clin Cancer Res. 2004;10:4227s–32.

    Article  CAS  PubMed  Google Scholar 

  157. Bhat FA, Sharmila G, Balakrishnan S, Arunkumar R, Elumalai P, Suganya S, Raja Singh P, Srinivasan N, Arunakaran J. Quercetin reverses EGF-induced epithelial to mesenchymal transition and invasiveness in prostate cancer (PC-3) cell line via EGFR/PI3K/Akt pathway. J Nutr Biochem. 2014;S0955-2863:00149-1.

    Google Scholar 

  158. Ien GS, Wu MS, Bien MY, Chen CH, Lin CH, Chen BC. Epidermal growth factor stimulates nuclear factor-κB activation and heme oxygenase-1 expression via c-Src, NADPH oxidase, PI3K, and Akt in human colon cancer cells. PLoS One. 2014;9:e104891.

    Article  CAS  Google Scholar 

  159. Karamysheva AF. Mechanisms of angiogenesis. Biochemistry (Mosc). 2008;73:751–62.

    Article  CAS  Google Scholar 

  160. Klagsbrun M, Moses MA. Molecular angiogenesis. Chem Biol. 1999;6:R217–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pravir Kumar Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jha, N.K. et al. (2016). Epigenetics and Angiogenesis in Cancer. In: Mishra, M., Bishnupuri, K. (eds) Epigenetic Advancements in Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-24951-3_7

Download citation

Publish with us

Policies and ethics