Skip to main content

Gene Expression, Epigenetic Regulation, and Cancer

  • Chapter
  • First Online:
Epigenetic Advancements in Cancer
  • 855 Accesses

Abstract

The human body is composed of many different types of somatic cells that vary in structure and function whereby each cell type possesses its own unique combination of proteins that will distinguish it from other types of cells. Hence only certain genes are expressed in cells that carry out specific functions, and different mechanisms have been identified to control gene expression. Histone modification and DNA methylation are two major types of epigenetic mechanisms that are important for normal development; however, under certain conditions, they may contribute to the onset of certain diseases. For example, changes to the epigenome may promote the growth of carcinogenic tumors. Epigenetic chemicals may originate from exposure to particular environmental stimuli, and lifestyle behaviors may play an important role in changing one’s epigenetic profile. Although epigenetic tags are not components of the DNA itself, they have the potential to be passed on to offspring. Novel drug therapies are being developed to target particular aberrant epigenetic activity responsible for initiating harmful health effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avissar Y, Choi J, DeSaix J, et al. Biology. Houston: OpenStax College. 2013. http://openstaxcollege.org/files/textbook_version/low_res_pdf/11/col11448-lr.pdf. Accessed 15 Oct 2013.

    Google Scholar 

  2. Mader S, Windelspecht M. Inquiry into life. 14th ed. New York: McGraw-Hill; 2014.

    Google Scholar 

  3. Starr C. Biology: concepts and applications. 5th ed. Belmont: Thomas Learning; 2003.

    Google Scholar 

  4. Belk C, Borden V. Biology: science for life with physiology. 2nd ed. Upper Saddle River: Prentice-Hall; 2007.

    Google Scholar 

  5. Cummings MR. Human heredity: principles and issues. 10th ed. Belmont: Brooks/Cole; 2014.

    Google Scholar 

  6. Reece JB, Meyers N, Urry LA, et al. Biology, Australian and New Zealand version. 10th ed. Melbourne: Pearson; 2015.

    Google Scholar 

  7. Gomez-Pinilla F, Vaynman S. Intersecting genetics with lifestyle: the role of exercise and diet. In: Dudek SM, editor. Transcriptional regulation by neuronal activity. New York: Springer; 2008. p. 337–75.

    Chapter  Google Scholar 

  8. Tollefsbol T. Epigenetics of human disease. In: Tollefsbol T, editor. Epigenetics in human disease. New York: Academic; 2012. p. 1–6.

    Chapter  Google Scholar 

  9. Pecorino L. Molecular biology of cancer: mechanisms, targets, and therapeutics. 2nd ed. New York: Oxford University Press; 2008.

    Google Scholar 

  10. Lodish H, Berk A, Kaiser CA, et al. Molecular cell biology. 6th ed. New York: W. H. Freeman and Company; 2008.

    Google Scholar 

  11. Strachan T, Read AP. Human molecular genetics. 3rd ed. Kentucky: Garland Publishing; 2004.

    Google Scholar 

  12. Popa G. DNA and protein synthesis: histones. 2014. http://www.fastbleep.com/biology-notes/40/116/1191. Accessed 7 Nov 2014.

  13. Sadava D, et al. Life: the science of biology. 9th ed. Sunderland: Sinauer Associates; 2011.

    Google Scholar 

  14. Ishida S, Huang E, Zuzan H, et al. Role for E2F in control of both DNA replication and mitotic functions as revealed from DNA microarray analysis. J Mol Cell Biol. 2001;21:4684–99.

    Article  CAS  Google Scholar 

  15. Lachman DS. Gene control. New York: Garland Science; 2010.

    Google Scholar 

  16. Craig NL, Cohen-Fix O, Green R, et al. Molecular biology: principles of genome function. New York: Oxford University Press; 2010.

    Google Scholar 

  17. Heller D, et al. Principles of life. Gordonsville: W. H. Freeman & Company; 2012.

    Google Scholar 

  18. Papachristodoulou D, et al. Biochemistry and molecular biology. 5th ed. New York: Oxford University Press; 2014.

    Google Scholar 

  19. Solomon E, et al. Biology. 10th ed. Stamford: Cengage Learning; 2015.

    Google Scholar 

  20. Erick T. Epigenetics: how nurture shapes our nature. Footnote. 2014. http://footnote1.com/epigenetics-reveals-how-environment-shapes-gene-expression. Accessed 1 Mar 2014.

  21. National Institute of Child Health and Human Development. What role do epigenetics and developmental epigenetics play in health and disease? National Institutes of Health. 2013. http://m.nichd.nih.gov/topics/epigenetics/conditioninfo/pages/impact.aspx. Accessed 3 May 2014.

  22. Fraga MF, Ballestar E, Paz MF, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A. 2005;102:10604–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Waterland RA, Jirtle RL. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. J Mol Cell Biol. 2003;23:5293–300.

    Article  CAS  Google Scholar 

  24. Melmed S. The pituitary. 3rd ed. San Diego: Elsevier; 2011.

    Google Scholar 

  25. Piyathilake CJ, Johanning GL. Environmental influences on DNA methylation. In: Neumann HP, editor. Progress in DNA methylation research. New York: Nova Science; 2007. p. 117–32.

    Google Scholar 

  26. Marchlewicz EH, Anderson OS, Dolinoy DC. Early-life exposures and the epigenome: interactions between nutrients and the environment. In: Ho E, Domann F, editors. Nutrition and epigenetics. Boca Raton: Taylor & Francis; 2015. p. 3–54.

    Google Scholar 

  27. Rosenfeld CS. Animal models of transgenerational epigenetic effects. In: Tollefsbol T, editor. Transgenerational epigenetics: evidence and debate. San Diego: Elsevier; 2014. p. 121–37.

    Google Scholar 

  28. Sollars V, Lu X, Xiao L, et al. Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution. Nat Genet. 2003;33:70–4.

    Article  CAS  PubMed  Google Scholar 

  29. Guerrero-Bosagna C, et al. Epigenetics transgeneration actions of vinclozolin on promoter regions of the sperm epigenome. 2010. http://www.ncbi.nlm.nih.gov/pubmed/20927350. Accessed 10 Nov 2014.

  30. Prescott S, Saffery R. The role of epigenetic dysfunction in the epidemic of allergic disease. Clin Epigenetics. 2011;2:223–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ito K, Lim S, Caramori G, et al. Cigarette smoking reduces histone deacetylase 2 expression, enhances cytokine expression, and inhibits glucocorticoid actions in alveolar macrophages. FASEB J. 2001;15:1110–2.

    CAS  PubMed  Google Scholar 

  32. Launay JM, Del Pino M, Chironi G, et al. Smoking induces long-lasting effects through a monoamine-oxidase epigenetic regulation. PLOS One. 2009. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0007959. Accessed 20 Nov 2014.

  33. Kaludercic N, Carpi A, Menabo R, et al. Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury. Mol Cell Res. 2011;7:1323–32.

    Google Scholar 

  34. Sears MR, Holdaway MD, Flannery EM, et al. Parental and neonatal risk factors for atopy, airway hyper-responsiveness, and asthma. Arch Dis Child. 1996;75:392–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li YF, et al. Maternal and grandmaternal smoking patterns are associated with early childhood asthma. Chest. 2005;127:1232–41.

    PubMed  Google Scholar 

  36. Breton CV, Byun HM, Wenten M, et al. Prenatal tobacco smoke exposure affects global and gene-specific DNA methylation. Am J Respir Crit Care Med. 2009;209:462–7.

    Article  Google Scholar 

  37. Cooper GM. The cell: a molecular approach. 2nd ed. Sunderland: Sinauer Associates; 2000.

    Google Scholar 

  38. Weinberg RA. The biology of cancer. New York: Garland Science; 2007.

    Google Scholar 

  39. Anand P, Kunnumakara AB, Sundaram C, et al. Cancer is a preventable disease that requires major lifestyle changes. Pharm Res. 2008;25:2097–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Loeb KR, Loeb LA. Significance of multiple mutations in cancer. Carcinogenesis. 2000;21:379–85.

    Article  CAS  PubMed  Google Scholar 

  41. Sadava D, Heller C, Orlans G, et al. Life: the science of biology. 8th ed. Sunderland: Sinauer Associates; 2008.

    Google Scholar 

  42. Wilson AS, Power BE, Molloy PL. DNA hypomethylation and human diseases. Biochim Biophys Acta. 2007;1775:138–62.

    CAS  PubMed  Google Scholar 

  43. O’Doherty AM, Church SW, Russell SEH, et al. Methylation status of oestrogen receptor—a gene promoter sequence in human ovarian epithelial cell lines. Br J Cancer. 2002;86:282–4.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Corn PG, Kuerbitz SJ, Van Noesel MM, et al. Transcriptional silencing of the p73 gene in acute lymphoblastic leukemia and Burkitt’s lymphoma is associated with 5′ CpG island methylation. Cancer Res. 1999;59:3352–6.

    CAS  PubMed  Google Scholar 

  45. Raven PH, Johnson GB. Biology. 4th ed. New York: McGraw Hill; 2001.

    Google Scholar 

  46. Greger V, Passarge E, Höpping W, et al. Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum Genet. 1989;83:155–8.

    Article  CAS  PubMed  Google Scholar 

  47. Herranz M, Esteller M. DNA methylation and histone modifications in patients with cancer: potential prognostic and therapeutic targets. In: Sioud M, editor. Target discovery and validation reviews and protocols. Totowa: Humana Press; 2007. p. 25–62.

    Google Scholar 

  48. Morgan DO. The cell cycle: principles of control. Sunderland: New Science Press; 2007.

    Google Scholar 

  49. Song J, Noh JH, Lee JH, et al. Increased expression of histone deacetylase 2 is found in human gastric cancer. APMIS. 2005;113:264–8.

    Article  CAS  PubMed  Google Scholar 

  50. Fraga MF, Ballestar E, Villar-Garea A, et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet. 2005;37:391–400.

    Article  CAS  PubMed  Google Scholar 

  51. Van Quill KR, O’Brien JM. The role of the retinoblastoma protein in health, malignancy, and the pathogenesis of retinoblastoma. In: Albert DM, Polans A, editors. Ocular oncology. Boca Raton: Taylor & Francis; 2003. p. 129–88.

    Chapter  Google Scholar 

  52. Brehm A, Miska EA, McCance DJ, et al. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature. 1998;391:597–601.

    Article  CAS  PubMed  Google Scholar 

  53. Nephew KP. Epigenetic gene silencing. In: Schwab M, editor. Encyclopedia of cancer. Berlin: Springer; 2012. p. 1284–6.

    Google Scholar 

  54. Goffin J, Eisenhauer E. DNA methyltransferase inhibitors—state of the art. Ann Oncol. 2002;13:1699–716.

    Article  CAS  PubMed  Google Scholar 

  55. Saldanha SN, Tollefsbol TO. Epigenetic approaches to cancer therapy. In: Tollefsbol T, editor. Epigenetics in human disease. New York: Academic; 2012. p. 111–6.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuntele N. Burns .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Burns, S.N. (2016). Gene Expression, Epigenetic Regulation, and Cancer. In: Mishra, M., Bishnupuri, K. (eds) Epigenetic Advancements in Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-24951-3_4

Download citation

Publish with us

Policies and ethics