Advertisement

Pose Estimation and Shape Retrieval with Hough Voting in a Continuous Voting Space

  • Viktor Seib
  • Norman Link
  • Dietrich Paulus
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9358)

Abstract

In this paper we present a method for 3D shape classification and pose estimation. Our approach is related to the recently popular adaptations of Implicit Shape Models to 3D data, but differs in some key aspects. We propose to omit the quantization of feature descriptors in favor of a better descriptiveness of training data. Additionally, a continuous voting space, in contrast to discrete Hough spaces in state of the art approaches, allows for more stable classification results under parameter variations. We evaluate and compare the performance of our approach with recently presented methods. The proposed algorithm achieves best results on three challenging datasets for 3D shape retrieval.

References

  1. 1.
    Ballard, D.H.: Generalizing the hough transform to detect arbitrary shapes. Pattern Recognit. 13(2), 111–122 (1981)CrossRefzbMATHGoogle Scholar
  2. 2.
    Barequet, G., Har-Peled, S.: Efficiently approximating the minimum-volume bounding box of a point set in three dimensions. J. Algorithms 38(1), 91–109 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bronstein, A.M., Bronstein, M.M., Guibas, L.J., Ovsjanikov, M.: Shape google: geometric words and expressions for invariant shape retrieval. ACM Trans. Graph. (TOG) 30(1), 1 (2011)CrossRefGoogle Scholar
  4. 4.
    Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell. 17(8), 790–799 (1995)CrossRefGoogle Scholar
  5. 5.
    Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)CrossRefGoogle Scholar
  6. 6.
    Csurka, G., Dance, C., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision, ECCV, vol. 1, pp. 1–2 (2004)Google Scholar
  7. 7.
    Dutagaci, H., Godil, A., Axenopoulos, A., Daras, P., Furuya, T., Ohbuchi, R.: Shrec’09 track: querying with partial models. In: Proceedings of the 2nd Eurographics Conference on 3D Object Retrieval, pp. 69–76. Eurographics Association (2009)Google Scholar
  8. 8.
    Fukunaga, K., Hostetler, L.D.: The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. Inf. Theory 21(1), 32–40 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gall, J., Lempitsky, V.: Class-specific hough forests for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 1022–1029, June 2009Google Scholar
  10. 10.
    Har-Peled, S.: A practical approach for computing the diameter of a point set. In: Proceedings of the Seventeenth Annual Symposium on Computational Geometry, pp. 177–186 (2001)Google Scholar
  11. 11.
    Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. In: Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, pp. 71–78 (1992)Google Scholar
  12. 12.
    Knopp, J., Prasad, M., Van Gool, L.: Orientation invariant 3d object classification using hough transform based methods. In: Proceedings of the ACM Workshop on 3D Object Retrieval, 3DOR 2010, pp. 15–20 (2010)Google Scholar
  13. 13.
    Knopp, J., Prasad, M., Willems, G., Timofte, R., Van Gool, L.: Hough transform and 3D SURF for robust three dimensional classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 589–602. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  14. 14.
    Leibe, B., Leonardis, A., Schiele, B.: Combined object categorization and segmentation with an implicit shape model. In: Workshop on Statistical Learning in Computer Vision, ECCV 2004, pp. 17–32 (2004)Google Scholar
  15. 15.
    Leibe, B., Leonardis, A., Schiele, B.: Robust object detection with interleaved categorization and segmentation. Int. J. Comput. Vis. 77(1–3), 259–289 (2008)CrossRefGoogle Scholar
  16. 16.
    Liu, Y., Zha, H., Qin, H.: Shape topics: a compact representation and new algorithms for 3d partial shape retrieval. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006, vol. 2, pp. 2025–2032. IEEE (2006)Google Scholar
  17. 17.
    Markley, F.L., Cheng, Y., Crassidis, J.L., Oshman, Y.: Quaternion averaging. J. Guidance Control Dyn. 30(4), 1193–1197 (2007)CrossRefGoogle Scholar
  18. 18.
    Ohbuchi, R., Osada, K., Furuya, T., Banno, T.: Salient local visual features for shape-based 3d model retrieval. In: IEEE International Conference on Shape Modeling and Applications, SMI 2008, pp. 93–102. IEEE (2008)Google Scholar
  19. 19.
    Salti, S., Tombari, F., Di Stefano, L.: On the use of implicit shape models for recognition of object categories in 3D data. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part III. LNCS, vol. 6494, pp. 653–666. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  20. 20.
    Seib, V., Link, N., Paulus, D.: Implicit shape models for 3d shape classification with a continuous voting space. In: International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (2014)Google Scholar
  21. 21.
    Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The princeton shape benchmark. In: Proceedings of Shape Modeling Applications, 2004, pp. 167–178. IEEE (2004)Google Scholar
  22. 22.
    Sivic, J., Zisserman, A.: Video google: a text retrieval approach to object matching in videos. In: Proceedings of Ninth IEEE International Conference on Computer Vision, 2003, pp. 1470–1477. IEEE (2003)Google Scholar
  23. 23.
    Stanford University Computer Graphics Laboratory: Stanford 3d scanning repository, November 2014. http://graphics.stanford.edu/data/3Dscanrep/
  24. 24.
    Toldo, R., Castellani, U., Fusiello, A.: A Bag of Words approach for 3D object categorization. In: Gagalowicz, A., Philips, W. (eds.) MIRAGE 2009. LNCS, vol. 5496, pp. 116–127. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  25. 25.
    Tombari, F., Di Stefano, L.: Object recognition in 3d scenes with occlusions and clutter by hough voting. In: Fourth Pacific-Rim Symposium on Image and Video Technology (PSIVT 2010), pp. 349–355. IEEE (2010)Google Scholar
  26. 26.
    Tombari, F., Salti, S., Di Stefano, L.: Unique signatures of histograms for local surface description. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 356–369. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  27. 27.
    Wittrowski, J., Ziegler, L., Swadzba, A.: 3d implicit shape models using ray based hough voting for furniture recognition. In: 2013 International Conference on 3DTV-Conference, pp. 366–373. IEEE (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Active Vision Group (AGAS)University of Koblenz-LandauKoblenzGermany

Personalised recommendations