Skip to main content

Algae Genome-Scale Reconstruction, Modelling and Applications

  • Chapter
  • First Online:
  • 6317 Accesses

Part of the book series: Developments in Applied Phycology ((DAPH,volume 6))

Abstract

Driven by revolutionary advances in high-throughput omics technologies, genome-scale metabolic reconstructions are a common denominator in systems biology and are available for a wide range of organisms. The constraint modelling formulation approach derived from the metabolic reconstructions have been successfully used to a number of applications including: metabolic engineering, biofuel research, genome functional annotation, omics data integration and in particular global pathway analysis. Recent advances have been made on plant and algae genome-scale metabolic reconstruction. In this book chapter we present the genome-scale reconstructions based on Chlamydomonas reinhardtii along with modelling formulation. We also give a few examples of the use of genome-scale models to algae biotechnological applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Blazeck J, Alper H (2010) Systems metabolic engineering: genome-scale models and beyond. Biotechnol J 5:647–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Branyikova I, Marsalkova B, Doucha J, Branyik T, Bisova K, Zachleder V, Vitova M (2011) Microalgae – novel highly efficient starch producers. Biotechnol Bioeng 108:766–776

    Article  CAS  PubMed  Google Scholar 

  • Cakir T, Efe C, Dikicioglu D, Hortacsu A, Kirdar B, Oliver SG (2007) Flux balance analysis of a genome-scale yeast model constrained by exometabolomic data allows metabolic system identification of genetically different strains. Biotechnol Prog 23:320–326

    Article  CAS  PubMed  Google Scholar 

  • Chang RL, Ghamsari L, Manichaikul A, Hom EF, Balaji S, Fu W, Shen Y, Hao T, Palsson B, Salehi-Ashtiani K, Papin JA (2011) Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal metabolism. Mol Syst Biol 7:518. doi:10.1038/msb.2011.52

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen YH, Walker TH (2011) Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel-derived crude glycerol. Biotechnol Lett 33:1973–1983

    Article  CAS  PubMed  Google Scholar 

  • Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102:71–81

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • de la Rosa FF, Montes O, Galvan F (2001) Solar energy conversion by green microalgae: a photosystem for hydrogen peroxide production. Biotechnol Bioeng 74:539–543

    Article  PubMed  Google Scholar 

  • de Oliveira Dal’Molin CG, Nielsen LK (2013) Plant genome-scale metabolic reconstruction and modelling. Curr Opin Biotechnol 24:271–277

    Article  PubMed  Google Scholar 

  • de Oliveira Dal’Molin CG, Quek LE, Palfreyman RW, Brumbley SM, Nielsen LK (2010a) C4GEM, a genome-scale metabolic model to study C4 plant metabolism. Plant Physiol 154:1871–1885

    Article  PubMed Central  Google Scholar 

  • de Oliveira Dal’Molin CGD, Quek LE, Palfreyman RW, Brumbley SM, Nielsen LK (2010b) AraGEM, a genome-scale reconstruction of the primary metabolic network in Arabidopsis. Plant Physiol 152:579–589

    Article  PubMed  PubMed Central  Google Scholar 

  • de Oliveira Dal’Molin CG, Quek LE, Palfreyman RW, Nielsen LK (2011) AlgaGEM – a genome-scale metabolic reconstruction of algae based on the Chlamydomonas reinhardtii genome. BMC Genomics 12(Suppl 4):S5

    Article  Google Scholar 

  • de Oliveira Dal’molin CG, Quek LE, Palfreyman RW, Nielsen LK (2014) Plant genome-scale modeling and implementation. Methods Mol Biol 1090:317–332

    Article  Google Scholar 

  • de Oliveira Dal’Molin CG, Saa PA, Nielsen LK (2015) A multi-tissue genome-scale metabolic modelling framework for the analysis of whole plant systems. Front Plant Sci 6:4. doi:10.3389/fpls.2015.00004

    Google Scholar 

  • DeJongh M, Formsma K, Boillot P, Gould J, Rycenga M, Best A (2007) Toward the automated generation of genome-scale metabolic networks in the SEED. BMC Bioinforma 8:139

    Article  Google Scholar 

  • Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson BO (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci U S A 104:1777–1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durot M, Bourguignon PY, Schachter V (2009) Genome-scale models of bacterial metabolism: reconstruction and applications. FEMS Microbiol Rev 33:164–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards JS, Ibarra RU, Palsson BO (2001) In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 19:125–130

    Article  CAS  PubMed  Google Scholar 

  • Escobar R, Garcia-Dominguez S, Guiraum A, Montes O, Galvan F, de La Rosa FF (2000) A flow injection chemiluminescence method using Cr(III) as a catalyst for determining hydrogen peroxide. Application to H2O2 determination in cultures of microalgae. Luminescence 15:131–135

    Article  CAS  PubMed  Google Scholar 

  • Famili I, Forster J, Nielson J, Palsson BO (2003) Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network. Proc Natl Acad Sci U S A 100:13134–13139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feist AM, Herrgard MJ, Thiele I, Reed JL, Palsson BO (2009) Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 7:129–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes BD, Dragone GM, Teixeira JA, Vicente AA (2010) Light regime characterization in an airlift photobioreactor for production of microalgae with high starch content. Appl Biochem Biotechnol 161:218–226

    Article  CAS  PubMed  Google Scholar 

  • Forster J, Famili I, Fu P, Palsson BO, Nielsen J (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13:244–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goh LP Jr, Loh SP, Fatimah MY, Perumal K (2009) bioaccessibility of carotenoids and tocopherols in marine microalgae, Nannochloropsis sp. and Chaetoceros sp. Malays J Nutr 15:77–86

    PubMed  Google Scholar 

  • Guedes AC, Amaro HM, Malcata FX (2011) Microalgae as sources of carotenoids. Mar Drugs 9:625–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, Stevens RL (2010) High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 28:977–982

    Article  CAS  PubMed  Google Scholar 

  • Jang YS, Lee J, Malaviya A, do Seung Y, Cho JH, Lee SY (2012a) Butanol production from renewable biomass: rediscovery of metabolic pathways and metabolic engineering. Biotechnol J 7:186–198

    Article  CAS  PubMed  Google Scholar 

  • Jang YS, Park JM, Choi S, Choi YJ, Seung DY, Cho JH, Lee SY (2012b) Engineering of microorganisms for the production of biofuels and perspectives based on systems metabolic engineering approaches. Biotechnol Adv 30:989–1000

    Article  CAS  PubMed  Google Scholar 

  • Kim HU, Kim TY, Lee SY (2008) Metabolic flux analysis and metabolic engineering of microorganisms. Mol Biosyst 4:113–120

    Article  PubMed  Google Scholar 

  • Kohlstedt M, Becker J, Wittmann C (2010) Metabolic fluxes and beyond-systems biology understanding and engineering of microbial metabolism. Appl Microbiol Biotechnol 88:1065–1075

    Article  CAS  PubMed  Google Scholar 

  • Kruse O, Rupprecht J, Bader KP, Thomas-Hall S, Schenk PM, Finazzi G, Hankamer B (2005) Improved photobiological H2 production in engineered green algal cells. J Biol Chem 280:34170–34177

    Article  CAS  PubMed  Google Scholar 

  • Lee SY (2010a) Systems metabolic engineering for chemicals and materials. J Biotechnol 150:S1

    Article  Google Scholar 

  • Lee SY (2010b) Systems metabolic engineering for chemicals and materials. J Biotechnol 150:S574

    Article  Google Scholar 

  • Lee SY, Park JH (2010) Integration of systems biology with bioprocess engineering: L-threonine production by systems metabolic engineering of Escherichia coli. Adv Biochem Eng Biotechnol 120:1–19

    Article  CAS  PubMed  Google Scholar 

  • Lee JM, Gianchandani EP, Papin JA (2006) Flux balance analysis in the era of metabolomics. Brief Bioinform 7:140–150

    Article  PubMed  Google Scholar 

  • Lee JW, Kim TY, Jang YS, Choi S, Lee SY (2011) Systems metabolic engineering for chemicals and materials. Trends Biotechnol 29:370–378

    Article  CAS  PubMed  Google Scholar 

  • Macias-Sanchez MD, Mantell Serrano C, Rodriguez Rodriguez M, Martinez de la Ossa E, Lubian LM, Montero O (2008) Extraction of carotenoids and chlorophyll from microalgae with supercritical carbon dioxide and ethanol as cosolvent. J Sep Sci 31:1352–1362

    Article  CAS  PubMed  Google Scholar 

  • Melis A, Seibert M, Ghirardi ML (2007) Hydrogen fuel production by transgenic microalgae. Adv Exp Med Biol 616:110–121

    Article  PubMed  Google Scholar 

  • Mendoza E (2007) What we can learn from a genome scale model of unicellular metabolism? Amino Acids 33(3):XXV

    Google Scholar 

  • Mo ML, Jamshidi N, Palsson BO (2007) A genome-scale, constraint-based approach to systems biology of human metabolism. Mol Biosyst 3:598–603

    Article  CAS  PubMed  Google Scholar 

  • Moroney JV, Wilson BJ, Tolbert NE (1986) Glycolate metabolism and excretion by Chlamydomonas reinhardtii. Plant Physiol 82:821–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oberhardt MA, Palsson BO, Papin JA (2009) Applications of genome-scale metabolic reconstructions. Mol Syst Biol 5:320

    Article  PubMed  PubMed Central  Google Scholar 

  • Orth JD, Thiele I, Palsson BO (2010) What is flux balance analysis? Nat Biotechnol 28:245–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JM, Kim TY, Lee SY (2009) Constraints-based genome-scale metabolic simulation for systems metabolic engineering. Biotechnol Adv 27:979–988

    Article  PubMed  Google Scholar 

  • Potvin G, Zhang Z (2010) Strategies for high-level recombinant protein expression in transgenic microalgae: a review. Biotechnol Adv 28:910–918

    Article  CAS  PubMed  Google Scholar 

  • Quek L, Nielsen LK (2008) On the reconstruction of the Mus musculus genome-scale metabolic network model. Genome Inform 21:89–100

    CAS  PubMed  Google Scholar 

  • Rudd KE (2000) EcoGene: a genome sequence database for Escherichia coli K-12. Nucleic Acids Res 28:60–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schellenberger J, Que R, Fleming RMT, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S, Kang J, Hyduke DR, Palsson BO (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 6:1290–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz JM, Gaugain C, Nacher JC, de Daruvar A, Kanehisa M (2007) Observing metabolic functions at the genome scale. Genome Biol 8(6):R123

    Article  PubMed  PubMed Central  Google Scholar 

  • Spencer KG, Togasaki RK (1981) Limitations on the utilization of glycolate by Chlamydomonas reinhardtii. Plant Physiol 68:28–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stabenau H, Winkler U (2005) Glycolate metabolism in green algae. Physiol Plant 123:235–245

    Article  CAS  Google Scholar 

  • Thiele I, Palsson BO (2010a) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5:93–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiele I, Palsson BO (2010b) Reconstruction annotation jamborees: a community approach to systems biology. Mol Syst Biol 6:361

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiana G. O. Dal’Molin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dal’Molin, C.G.O., Nielsen, L.K. (2016). Algae Genome-Scale Reconstruction, Modelling and Applications. In: Borowitzka, M., Beardall, J., Raven, J. (eds) The Physiology of Microalgae. Developments in Applied Phycology, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-24945-2_22

Download citation

Publish with us

Policies and ethics