Skip to main content

Sterols in Microalgae

  • Chapter
  • First Online:
The Physiology of Microalgae

Part of the book series: Developments in Applied Phycology ((DAPH,volume 6))

Abstract

This chapter reviews the sterol compositions reported for the different classes of microalgae. For a few major phyla such as the green microalgae, diatoms, dinoflagellates and haptophytes a sufficiently large number of species (over 100 in the case of diatoms) have been analysed for sterols allowing some generalisations to be made and characteristic features to be identified. In many other algal classes there is a paucity of sterol data available as only a few species have been analysed. These compositions are discussed in terms of taxonomic groupings and from the viewpoint of the various steps involved in sterol biosynthesis that introduce specific double bonds or alkylate the sterol side-chain. Green microalgae are shown to have a variety of compositions including some with simple distributions of sterols dominated by the C29 sterol 24-ethylcholest-5-en-3β-ol (sitosterol) more commonly associated with higher plants. In other green algae a predominance of Δ7-unsaturated sterols is found dominated by 24-methylcholesta-5,7,22E-dien-3β-ol (ergosterol). Diatoms contain a surprising diversity of sterol distributions with over 40 sterols identified. Common sterols include 24-methylcholesta-5,22E-dien-3β-ol, 24-methylenecholesterol and cholesterol. Some diatom genera display distinctive distributions such as Amphora which contains high contents of the C29 sterol 24-ethylcholesta-5,22E-dien-3β-ol. A number of unusual sterols have been found in smaller amounts in a few species including 4-methylsterols and the C30 sterol gorgosterol. Sterols with a methyl group at C-23 are also surprisingly common showing that this feature is not unique to dinoflagellate sterols. Many dinoflagellates contain mixtures of 4-methylsterols including the C30 sterol 4α,23,24-trimethyl-5α-cholest-22E-en-3β-ol (dinosterol), as well as related 5α(H)-stanols. A few genera contain unusual sterols such as Amphidinium and Karenia species which contain Δ8(14)-unsaturated sterols. Haptophytes, in contrast, usually have simple sterol distributions, often dominated by 24-methylcholesta-5,22E-dien-3β-ol also found in diatoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akihisa T, Hori T, Suzuki H, Sakoh T, Yokota T, Tamura T (1992) 24β-Methyl-5α-cholest-9(11)-en-3β-ol, two 24β-alkyl-Δ5,7,9(11)-sterols and other 24β-alkylsterols from Chlorella vulgaris. Phytochemistry 31:1769–1772

    Article  CAS  Google Scholar 

  • Amo M, Suzuki N, Kawamura H, Yamaguchi A, Takano Y, Horiguchi T (2010) Sterol composition of dinoflagellates: different abundance and composition in heterotrophic species and resting cysts. Geochem J 44:225–231

    Article  CAS  Google Scholar 

  • Anding C, Ourisson G (1973) Presence of ergosterol in light-grown and dark-grown Euglena gracilis Z. Eur J Biochem 34:345–346

    Article  CAS  PubMed  Google Scholar 

  • Anding C, Brandt RD, Ourisson G (1971) Sterol biosynthesis in Euglena gracilis Z. Sterol precursors in light-grown and dark-grown Euglena gracilis Z. Eur J Biochem 24:259–263

    Article  CAS  PubMed  Google Scholar 

  • Atwood AR, Sachs JP (2012) Purification of dinosterol from complex mixtures of sedimentary lipids for hydrogen isotope analysis. Org Geochem 48:37–46

    Article  CAS  Google Scholar 

  • Ballantine JA, Lavis A, Morris RJ (1979) Sterols of the phytoplankton-effects of illumination and growth stage. Phytochemistry 18:1459–1466

    Article  CAS  Google Scholar 

  • Barrett SM, Volkman JK, Dunstan GA, LeRoi JM (1995) Sterols of 14 species of marine diatoms (Bacillariophyta). J Phycol 31:360–369

    Article  CAS  Google Scholar 

  • Beastall GH, Rees HH, Goodwin TW (1971) Sterols in Porphyridium cruentum. Tetrahedon Lett 52:4935–4938

    Article  Google Scholar 

  • Beastall GH, Tyndall AM, Rees HH, Goodwin TW (1974) Sterols in Porphyridium series. 4α-Methyl-5α-cholesta-8,22-dien-3β-ol and 4α,24-dimethyl-5α-cholesta-8,22-dien-3β-ol: two novel sterols from Porphyridium cruentum. Eur J Biochem 41:301–309

    Article  CAS  PubMed  Google Scholar 

  • Billard C, Daguet JC, Maume D, Bert M (1990) Sterols and chemotaxonomy of marine Chrysophyceae. Bot Mar 33:225–228

    Article  CAS  Google Scholar 

  • Bohlin L, Kokke WCMC, Fenical W, Djerassi C (1981) 4α-Methyl-24S-ethyl-5α-cholestanol-3β-ol and 4α-methyl-24S-ethyl-5α-cholest-8(14)-en-3β-ol, two new sterols from a cultured marine dinoflagellate. Phytochemistry 20:2397–2401

    Article  CAS  Google Scholar 

  • Boon JJ, Rijpstra WIC, de Lange F, de Leeuw JW, Yoshioka M, Shimizu Y (1979) Black Sea sterol – a molecular fossil for dinoflagellate blooms. Nature 277:125–127

    Article  CAS  Google Scholar 

  • Borowitzka MA (2016) Systematics, taxonomy and species names: do they matter? In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 655–681

    Google Scholar 

  • Bowler C et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244

    Article  CAS  PubMed  Google Scholar 

  • Brandt RD, Pryce RJ, Anding C, Ourisson G (1970) Sterol biosynthesis in Euglena gracilis Z. Comparative study of free and bound sterols in light and dark grown Euglena gracilis Z. Eur J Biochem 17:344–349

    Article  CAS  PubMed  Google Scholar 

  • Brothers SL, Dickson LG (1980) Sterols of Goniotrichum elegans. Phytochemistry 19:2357–2358

    Article  CAS  Google Scholar 

  • Buntel CJ, Griffin JH (1994) Evolution of sterol and triterpene cyclases. In: Nes WD (ed) Isopentenoids and other natural products – evolution and function, ACS Symposium Series No 562. American Chemical Society, Washington, pp 44–54

    Chapter  Google Scholar 

  • Butterfield NJ, Knoll AH, Swett K (1994) Paleobiology of the upper proterozoic Svanbergfjellet formation, Spitsbergen. Fossils Strata 34:1–84

    Google Scholar 

  • Canfield DE, Poulton SW, Knoll AH, Narbonne GM, Ross G, Goldberg T, Strauss H (2008) Ferruginous conditions dominated later Neoproterozoic deep-water chemistry. Science 321:949–952

    Article  CAS  PubMed  Google Scholar 

  • Castaneda IS, Werne JP, Johnson TC, Powers LA (2011) Organic geochemical records from Lake Malawi (East Africa) of the last 700 years, part II: biomarker evidence for recent changes in primary productivity. Palaeogeogr Palaeoclimatol Palaeoecol 303:140–154

    Article  Google Scholar 

  • Chappell J (2002) The genetics and molecular genetics of terpene and sterol origami. Curr Opin Plant Biol 5:151–157

    Article  CAS  PubMed  Google Scholar 

  • Chitwood DJ, Patterson GW (1991) Separation of epimeric pairs of C-24 alkylsterols by reversed-phase high performance liquid chromatography of the free sterols at subambient temperature. J Liq Chromatogr 14:151–163

    Article  CAS  Google Scholar 

  • Chiu PL, Patterson GW (1981) Quantitative estimation of C-24 epimeric sterol mixtures by 220 MHz nuclear magnetic resonance spectroscopy. Lipids 16:203–206

    Article  CAS  Google Scholar 

  • Collins RP, Kalnins K (1969) Sterols produced by Synura petersenii (Chrysophyta). Comp Biochem Physiol 30:779–782

    Article  CAS  PubMed  Google Scholar 

  • Conte MH, Volkman JK, Eglinton G (1994) Lipid biomarkers of the Haptophyta. In: Green JC, Leadbeater BSC (eds) The haptophyte algae. Clarendon Press, Oxford, pp 351–377

    Google Scholar 

  • Cranwell PA, Jaworski GHM, Bickley HM (1990) Hydrocarbons, sterols, esters and fatty acids in six freshwater chlorophytes. Phytochemistry 29:145–151

    Article  CAS  Google Scholar 

  • Dahmen JL, Leblond JD (2011) Free sterol composition of species in the dinoflagellate genus Pyrocystis: a spectrum of sterol diversity. J Eukaryot Microbiol 58:475–479

    Article  CAS  PubMed  Google Scholar 

  • de Leeuw JW, Rijpstra WIC, Schenck PA, Volkman JK (1983) Free, esterified and residual bound sterols in Black Sea Unit I sediments. Geochim Cosmochim Acta 47:455–465

    Article  Google Scholar 

  • De Souza NJ, Nes WR (1968) Sterols: isolation from a blue-green alga. Science 162:363

    Article  PubMed  Google Scholar 

  • Dempsey ME (1965) Pathways of enzymic synthesis and conversion to cholesterol of Δ5,7,24-cholestatrien-3β-o1 and other naturally occurring sterols. J Biol Chem 240:4176–4177

    CAS  PubMed  Google Scholar 

  • Dennis AL, Nes WD (2002) Sterol methyl transferase. Evidence for successive C-methyl transfer reactions generating Δ24(28)- and Δ25(27)-olefins by a single plant enzyme. Tetrahedon Lett 43:7017–7021

    Article  CAS  Google Scholar 

  • Desmond E, Gribaldo S (2009) Phylogenomics of sterol synthesis: insights into the origin, evolution, and diversity of a key eukaryotic feature. Genome Biol Evol 1:364–381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dickson LG, Patterson GW (1973) Inhibition of sterol biosynthesis in Chlorella ellipsoidea by AY-9944. Lipids 7:635–643

    Article  Google Scholar 

  • Dickson LG, Patterson GW, Cohen CF, Dutky SR (1972) Two novel sterols from inhibited Chlorella ellipsoidea. Phytochemistry 11:3473–3477

    Article  CAS  Google Scholar 

  • Doyle PJ, Patterson GW, Dutky SR, Thompson MJ (1972) Triparanol inhibition of sterol biosynthesis in Chlorella emersonii. Phytochemistry 11:1951–1960

    Article  CAS  Google Scholar 

  • Dunstan GA, Brown MR, Volkman JK (2005) Cryptophyceae and Rhodophyceae; chemotaxonomy, phylogeny, and application. Phytochemistry 66:2557–2570

    Article  CAS  PubMed  Google Scholar 

  • Duperon R, Thiersault M, Duperon P (1983) Occurrence of steryl glycosides and acylated steryl glycosides in some marine algae. Phytochemistry 22:535–538

    Article  CAS  Google Scholar 

  • Edvardsen B, Eikrem W, Shalchian-Tabrizi K, Riisberg I, Johnsen G, Naustvoll L, Throndsen J (2007) Verrucophora farcimen gen. et sp. nov. (Dictyochophyceae, Heterokontophyta) – a bloom-forming ichtyotoxic flagellate from the Skagerrak, Norway. J Phycol 43:1054–1070

    Article  CAS  Google Scholar 

  • Fabrégas J, Aran J, Morales ED, Lamela T, Otero A (1997) Modification of sterol concentration in marine microalgae. Phytochemistry 46:1189–1191

    Article  Google Scholar 

  • Gershengorn MC, Smith ARH, Goulston G, Goad LJ, Goodwin TW, Haines TH (1968) The sterols of Ochromonas danica and Ochromonas malhamensis. Biochemistry 7:1698–1706

    Article  CAS  PubMed  Google Scholar 

  • Gerst N, Ruan B, Pang J, Wilson WK, Schroepfer GJJ (1997) An updated look at the analysis of unsaturated C27 sterols by gas chromatography and mass spectrometry. J Lipid Res 38:1685–1701

    CAS  PubMed  Google Scholar 

  • Ghosh P, Patterson GW, Wikfors GH (1998) Sterols in some marine Prymnesiophyceae. J Phycol 34:511–514

    Article  CAS  Google Scholar 

  • Gibbons GF, Goad LJ, Goodwin TW (1967) The sterols of some marine red algae. Phytochemistry 6:677–683

    Article  Google Scholar 

  • Giner J-L, Wikfors GH (2011) “Dinoflagellate sterols” in marine diatoms. Phytochemistry 72:1896–1901

    Article  CAS  PubMed  Google Scholar 

  • Giner J-L, Zhao H, Tomas C (2008) Sterols and fatty acids of three harmful algae previously assigned as Chattonella. Phytochemistry 69:2167–2171

    Article  CAS  PubMed  Google Scholar 

  • Giner J-L, Zhao H, Boyer GL, Satchwell MF, Andersen RA (2009) Sterol chemotaxonomy of marine pelagophyte algae. Chem Biodivers 6:1111–1130

    Article  CAS  PubMed  Google Scholar 

  • Gladu PK, Patterson GW, Wikfors GW, Chitwood DJ, Lusby WR (1990) The occurrence of brassicasterol and epibrassicasterol in the Chromophycota. Comp Biochem Physiol 97B:491–494

    CAS  Google Scholar 

  • Gladu PK, Patterson GW, Wikfors GH, Lusby WR (1991a) Free and combined sterols of Pavlova gyrans. Lipids 26:656–659

    Article  CAS  Google Scholar 

  • Gladu PK, Patterson GW, Wikfors GW, Chitwood DJ, Lusby WR (1991b) Sterols of some diatoms. Phytochemistry 30:2301–2303

    Article  CAS  Google Scholar 

  • Gladu PK, Patterson GW, Wikfors GH, Smith BC (1995) Sterol, fatty acid, and pigment characteristics of UTEX 2341, a marine eustigmatophyte identified previously as Chlorella minutissima (Chlorophyceae). J Phycol 31:774–777

    Article  CAS  Google Scholar 

  • Goad LJ, Akihisa T (1997) Analysis of sterols. Blackie Academic, London, pp 1–437

    Book  Google Scholar 

  • Goad LJ, Withers N (1982) Identification of 27-nor-(24R)-24-methylcholesta-5,22-dien-3β-ol and brassicasterol as the major sterols of the marine dinoflagellate Gymnodinium simplex. Lipids 17:853–858

    Article  CAS  Google Scholar 

  • Goad LJ, Lenton JR, Knapp FF, Goodwin TW (1974) Phytosterol side chain biosynthesis. Lipids 9:582–595

    Article  CAS  PubMed  Google Scholar 

  • Goad LJ, Holz GGJ, Beach DH (1983) Identification of (24S)-24-methylcholesta-5,22-dien-3β-ol as the major sterol of a marine cryptophyte and a marine prymnesiophyte. Phytochemistry 22:475–476

    Article  CAS  Google Scholar 

  • Goers M, Schumann R, Gustavs L, Karsten U (2010) The potential of ergosterol as chemotaxonomic marker to differentiate between “Chlorella” species (Chlorophyta). J Phycol 46:1296–1300

    Article  Google Scholar 

  • Guiry MD, Guiry GM (2015) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org

  • Hai T, Schneider B, Schmidt J, Adam G (1996) Sterols and triterpenoids from the cyanobacterium Anabaena hallensis. Phytochemistry 41:1083–1084

    Article  CAS  Google Scholar 

  • Halevy S, Avivi L, Katan H (1966) Sterols of soil amoebas and Ochromonas danica: phylogenetic approach. J Protozool 12:293–296

    Article  Google Scholar 

  • Hallegraeff GM, Nichols PD, Volkman JK, Blackburn SI, Everitt DA (1991) Pigments, fatty acids, and sterols of the toxic dinoflagellate Gymnodinium catenatum. J Phycol 27:591–599

    Article  CAS  Google Scholar 

  • Hamm C, Reigstad M, Riser CW, Mühlebach A, Wassmann P (2001) On the trophic fate of Phaeocystis pouchetii. VII. Sterols and fatty acids reveal sedimentation of P. pouchetii-derived organic matter via krill fecal strings. Mar Ecol Prog Ser 209:55–69

    Article  Google Scholar 

  • Harvey HR, Bradshaw SA, O’Hara SCM, Eglinton G, Corner EDS (1988) Lipid composition of the marine dinoflagellate Scrippsiella trochoidea. Phytochemistry 27:1723–1729

    Article  CAS  Google Scholar 

  • Heimann K, Becker B, Harnisch H, Mukherjee KD, Melkonian M (1997) Biochemical characterization of plasma membrane vesicles of Cyanophora paradoxa. Bot Acta 110:401–410

    Article  CAS  Google Scholar 

  • Hirakawa Y, Howe A, James ER, Keeling PJ (2011) Morphological diversity between culture strains of a chlorarachniophyte, Lotharella globosa. PLoS One 6:e23193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holden MJ, Patterson GW (1982) Taxonomic implication of sterol composition in the genus Chlorella. Lipids 17:215–219

    Article  CAS  Google Scholar 

  • Huss VAR, Frank C, Hartmann EC, Hirmer M, Kloboucek A, Seidel BM, Wenzeler P, Kessler E (1999) Biochemical taxonomy and molecular phylogeny of the genus Chlorella sensu lato (Chlorophyta). J Phycol 35:587–598

    Article  CAS  Google Scholar 

  • Idler DR, Saito A, Wiseman P (1968) Sterols in red algae (Rhodophyceae). Steroids 11:465–473

    Article  CAS  PubMed  Google Scholar 

  • Ikekawa N, Fujimoto Y, Kadota S, Kikuchi T (1989) Effective separation of sterol C-24 epimers. J Chromatogr 468:91–98

    Article  Google Scholar 

  • Itoh T, Tani H, Fukishima K, Tamura T, Matsumoto T (1982) Structure-retention relationship of sterols and triterpene alcohols in gas chromatography on a glass capillary column. J Chromatogr 234:65–76

    Article  CAS  Google Scholar 

  • Jo Q, Choy EJ, Park DW, Véron B (2004) Sterol dynamics of heterotrophic Tetraselmis suecica and its nutritional implication in the bivalve aquaculture. Aquat Res 35:371–377

    Article  CAS  Google Scholar 

  • Jones GJ, Nichols PD, Shaw PM (1994) Analysis of microbial sterols and hopanoids. In: Goodfellow M, O’Donnell AG (eds) Chemical methods in prokaryotic systematics. Wiley, Chichester, pp 163–195

    Google Scholar 

  • Jordan RW, Iwataki M (2012) Chrysophyceae and Synurophyceae. In: eLS. Wiley, Chichester. doi:10.1002/9780470015902.a0023690

  • Kelly AE (2009) Hydrocarbon biomarkers for biotic and environmental evolution through the Neoproterozoic-Cambrian transition. PhD thesis, Massachusetts Institute of Technology, Boston

    Google Scholar 

  • Knapp FF, Greig JB, Goad LJ, Goodwin TW (1971) Conversion of 24-ethylidene-sterols into poriferasterol by Ochromonas malhamensis. J Chem Soc D Chem Commun:707–709

    Google Scholar 

  • Knoll AH, Summons RE, Waldbauer JR, Zumberge J (2007) The geological succession of primary producers in the oceans. In: Falkowski P, Knoll AH (eds) The evolution of photosynthetic organisms in the oceans. Elsevier Academic Press, Burlington, pp 133–163

    Google Scholar 

  • Kobayashi J (1989) Hymenosulphate, a novel sterol sulphate with Ca-releasing activity from the cultured marine haptophyte Hymenomonas sp. Perkin Trans 1:101–103

    Article  Google Scholar 

  • Kodner RB, Pearson A, Summons RE, Knoll AH (2008) Sterols in red and green algae: quantification, phylogeny, and relevance for the interpretation of geologic steranes. Geobiology 6:411–420

    Article  CAS  PubMed  Google Scholar 

  • Kokke WCMC, Fenical W, Djerassi C (1981) Sterols with unusual nuclear unsaturation from three cultured marine dinoflagellates. Phytochemistry 20:127–134

    Article  CAS  Google Scholar 

  • Kokke WCMC, Shoolery JN, Fenical W, Djerassi C (1984) Biosynthetic studies of marine lipids. 4. Mechanism of side chain alkylation in (E)-24-propylidenecholesterol by a chrysophyte alga. J Org Chem 49:3742–3752

    Article  CAS  Google Scholar 

  • Kristiansen J, Preisig, HR (eds) (2001) Encyclopedia of chrysophyte genera. Bibliotheca Phycologia, Band 110. J Cramer, Berlin, 260 pp

    Google Scholar 

  • Leblond JD, Chapman PJ (2002) A survey of the sterol composition of the marine dinoflagellates Karenia brevis, Karenia mikimotoi, and Karlodinium micrum: distribution of sterols within other members of the class Dinophyceae. J Phycol 38:670–682

    Article  CAS  Google Scholar 

  • Leblond JD, Lasiter AD (2012) Sterols of the green-pigmented, aberrant plastid dinoflagellate, Lepidodinium chlorophorum (Dinophyceae). Protist 163:38–46

    Article  CAS  PubMed  Google Scholar 

  • Leblond JD, Dahmen JL, Seipelt RL, Elrod-Erickson MJ, Kincaid R, Howard JC, Evens TJ, Chapman PJ (2005) Lipid composition of Chlorarachniophytes (Chlorarachniophyceae) from the genera Bigelowiella, Gymnochlora, and Lotharella. J Phycol 41:311–321

    Article  CAS  Google Scholar 

  • Leblond JD, Lasiter AD, Li C, Logares R, Rengefors K, Evens TJ (2010) A data mining approach to dinoflagellate clustering according to sterol composition: Correlations with evolutionary history. Int J Data Min Bioinforma 4:431–451

    Article  Google Scholar 

  • Leblond JD, Timofte HI, Roche SA, Porter NM (2011) Sterols of glaucocystophytes. Phycol Res 59:129–134

    Article  CAS  Google Scholar 

  • Leblond JD, Dahmen AS, Lebret K, Rengefors K (2013) Sterols of the green-pigmented, freshwater raphidophyte, Gonyostomum semen, from Scandinavian lakes. J Eukaryot Microbiol 60:399–405

    Article  CAS  PubMed  Google Scholar 

  • Leipe DD, Wainright PO, Gunderson JH, Porter D, Patterson DJ, Valois F, Himmerich S, Sogin ML (1994) The stramenopiles from a molecular perspective – 16S-like ribosomal-RNA sequences from Labyrinthuloides minuta and Cafeteria roenbergensis. Phycologia 33:369–377

    Article  Google Scholar 

  • Leliaert F, Smith DR, Moreau H, Herron MD, Verbruggen H, Delwiche CF, De Clerck O (2012) Phylogeny and molecular evolution of the green algae. Crit Rev Plant Sci 31:1–46

    Article  Google Scholar 

  • Lin DS, Ilias AM, Conner WE, Caldwell RS, Cory HT, Daves GDJ (1982) Composition and biosynthesis of sterols in selected marine phytoplankton. Lipids 17:818–824

    Article  CAS  Google Scholar 

  • Makou MC, Eglinton TI, Oppo DW, Hughen KA (2010) Postglacial changes in El Niño and La Niña behavior. Geology 38:43–46

    Article  CAS  Google Scholar 

  • Marshall J-A, Nichols PD, Hallegraeff GM (2002) Chemotaxonomic survey of sterols and fatty acids in six marine raphidophyte algae. J Appl Phycol 14:255–265

    Article  CAS  Google Scholar 

  • Maxwell JR, Mackenzie AS, Volkman JK (1980) Configuration at C-24 in steranes and sterols. Nature 286:694–697

    Article  CAS  Google Scholar 

  • Méjanelle L, Sanchez-Gargallo A, Bentaleb I, Grimalt JO (2003) Long chain n-alkyl diols, hydroxy ketones and sterols in a marine eustigmatophyte, Nannochloropsis gaditana, and in Brachionus plicatilis feeding on the algae. Org Geochem 34:527–538

    Article  CAS  Google Scholar 

  • Mercer EI, Harries WB (1975) The mechanism of alkylation at C-24 during clionasterol biosynthesis in Monodus subterraneus. Phytochemistry 14:439–443

    Article  CAS  Google Scholar 

  • Mercer EI, London RA, Kent ISA, Taylor AJ (1974) Sterols, sterol esters and fatty acids of Botrydium granulatum, Tribonema aequale and Monodus subterraneus. Phytochemistry 13:845–852

    Article  Google Scholar 

  • Miller MB, Haubrich BA, Wang Q, Snell WJ, Nes WD (2012) Evolutionarily conserved Δ25(27)-olefin ergosterol biosynthesis pathway in the alga Chlamydomonas reinhardtii. J Lipid Res 53:1636–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mooney BD, Nichols PD, De Salas MF, Hallegraeff GM (2007) Lipid, fatty acid, and sterol composition of eight species of Kareniaceae (Dinophyta): chemotaxonomy and putative lipid phycotoxins. J Phycol 43:101–111

    Article  CAS  Google Scholar 

  • Mostaert AS, Karsten U, Hara Y, Watanabe MM (1998) Pigments and fatty acids of marine raphidophytes: a chemotaxonomic re-evaluation. Phycol Res 46:213–220

    Article  CAS  Google Scholar 

  • Nes WD (2000) Sterol methyl transferase: enzymology and inhibition. Biochim Biophys Acta Mol Cell Biol Lipids 1529:63–88

    Article  CAS  Google Scholar 

  • Nes WD (2003) Enzyme mechanisms for sterol C-methylations. Phytochemistry 64:75–95

    Article  CAS  PubMed  Google Scholar 

  • Nes WD (2011) Biosynthesis of cholesterol and other sterols. Chem Rev 111:6423–6451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nes WR, Nes WD (1980) Lipids in evolution. Plenum Press, London, 244 pp

    Book  Google Scholar 

  • Nes WD, Song ZH, Dennis AL, Zhou WX, Nam J, Miller MB (2003) Biosynthesis of phytosterols. Kinetic mechanism for the enzymatic C-methylation of sterols. J Biol Chem 278:34505–34516

    Article  CAS  PubMed  Google Scholar 

  • Nichols PD, Volkman JK, Hallegraeff GM, Blackburn SI (1987) Sterols and fatty acids of the red tide flagellates Heterosigma akashiwo and Chattonella antiqua (Raphidophyceae). Phytochemistry 26:2537–2541

    Article  CAS  Google Scholar 

  • Nichols PD, Skerratt JH, Davidson A, Burton H, McMeekin TA (1991) Lipids of cultured Phaeocystis pouchetii: signatures for food-web, biogeochemical and environmental studies in Antarctica and the Southern Ocean. Phytochemistry 30:3209–3214

    Article  CAS  Google Scholar 

  • Not F, Valentin K, Romari K, Lovejoy C, Massana R et al (2007) Picobiliphytes: a marine picoplanktonic algal group with unknown affinities to other eukaryotes. Science 315:253–255

    Article  CAS  PubMed  Google Scholar 

  • Orcutt DM, Patterson GW (1975) Sterol, fatty acid and elemental composition of diatoms grown in chemically defined media. Comp Biochem Physiol 50B:579–583

    Google Scholar 

  • Ourisson G, Rohmer M, Poralla K (1987) Prokaryotic hopanoids and other polyterpenoid sterol surrogates. Ann Rev Microbiol 41:301–333

    Article  CAS  Google Scholar 

  • Palermo JA, Seldes AM, Gros EG (1984) Free sterols of the red alga Gigartina skottsbergii. Phytochemistry 23:2688–2689

    Article  CAS  Google Scholar 

  • Patterson GW (1967) Sterols of Chlorella. II. The occurrence of an unusual sterol mixture in Chlorella vulgaris. Plant Physiol 42:1457–1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patterson GW (1969) Sterols of Chlorella. III. Species containing ergosterol. Comp Biochem Physiol 31:391–394

    Article  CAS  Google Scholar 

  • Patterson GW (1974) Sterols of some green algae. Comp Biochem Physiol B 47:453–457

    Google Scholar 

  • Patterson GW (1994) Phylogenetic distribution of sterols. In: Nes WD (ed) Isopentenoids and other natural products. Evolution and function, ACS Symposium Series No. 562. American Chemical Society, Washington, pp 90–108

    Chapter  Google Scholar 

  • Patterson GW, Van Valkenburg SD (1990) Sterols of Dictyocha fibula (Chrysophyceae) and Olisthodiscus luteus (Raphidophyceae). J Phycol 26:484–489

    Article  CAS  Google Scholar 

  • Patterson GW, Thompson MJ, Dutky SR (1974) Two new sterols from Chlorella ellipsoidea. Phytochemistry 13:191–194

    Article  CAS  Google Scholar 

  • Patterson GW, Gladu PK, Wikfors GH, Lusby WR (1992) Unusual tetraene sterols in some phytoplankton. Lipids 27:154–156

    Article  CAS  Google Scholar 

  • Patterson GW, Gladu PK, Wikfors GH, Parish EJ, Livant PD, Lusby WR (1993a) Identification of two novel dihydroxysterols from Pavlova. Lipids 28:771–773

    Article  CAS  Google Scholar 

  • Patterson GW, Tsitsa-Tzardis E, Wikfors GH, Gladu PK, Chitwood DJ, Harrison D (1993b) Sterols of Tetraselmis (Prasinophyceae). Comp Biochem Physiol B 105:253–256

    Google Scholar 

  • Patterson GW, Tsitsa-Tzardis E, Wikfors GH, Ghosh P, Smith BC, Gladu PK (1994) Sterols of eustigmatophytes. Lipids 29:661–664

    Article  CAS  PubMed  Google Scholar 

  • Peeler TC, Stephenson MB, Einspahr KJ, Thompson GA (1989) Lipid characterization of an enriched plasma-membrane fraction of Dunaliella salina grown in media of varying salinity. Plant Physiol 89:970–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piepho M, Martin-Creuzburg D, Wacker A (2010) Simultaneous effects of light intensity and phosphorus supply on the sterol content of phytoplankton. PLoS One 5(12):e15828. doi:10.1371/journal.pone.0015828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piepho M, Martin-Creuzburg D, Wacker A (2012) Phytoplankton sterol contents vary with temperature, phosphorus and silicate supply: a study on three freshwater species. Eur J Phycol 47:138–145

    Article  Google Scholar 

  • Piretti MV, Pagliuca G, Boni L, Pistocchi R, Diamante M, Gazzotti T (1997) Investigation of 4-methyl sterols from cultured dinoflagellate algal strains. J Phycol 33:61–67

    Article  CAS  Google Scholar 

  • Potter D, Saunders GW, Andersen RA (1997) Phylogenetic relationships of the Raphidophyceae and Xanthophyceae as inferred from nucleotide sequences of the 18S ribosomal RNA gene. Am J Bot 84:966–972

    Article  CAS  PubMed  Google Scholar 

  • Proschold T, Marin B, Schlosser UG, Melkonian M (2001) Molecular phylogeny and taxonomic revision of Chlamydomonas (Chlorophyta). I. Emendation of Chlamydomonas Ehrenberg and Chloromonas Gobi, and description of Oogamochlamys gen. nov. and Lobochlamys gen. nov. Protist 152:265–300

    Article  CAS  PubMed  Google Scholar 

  • Raederstorff D, Rohmer M (1984) Sterols of the unicellular algae Nematochrysopsis roscoffensis and Chrysotilla lamellosa: isolation of 24(E)-24-n-propylidenecholesterol and 24-n-propylcholesterol. Phytochemistry 23:2835–2838

    Article  CAS  Google Scholar 

  • Rampen SW, Schouten S, Hopmans EC, Abbas B, Noordeloos AAM, Van Bleijswijk JDL, Geenevasen JAJ, Sinninghe Damsté JS (2009a) Diatoms as a source for 4-desmethyl-23,24-dimethyl steroids in sediments and petroleum. Geochim Cosmochim Acta 73:377–387

    Article  CAS  Google Scholar 

  • Rampen SW, Schouten S, Hopmans EC, Abbas B, Noordeloos AAM, Geenevasen JAJ, Moldowan JM, Denisevich P, Sinninghe Damsté JS (2009b) Occurrence and biomarker potential of 23-methyl steroids in diatoms and sediments. Org Geochem 40:219–228

    Article  CAS  Google Scholar 

  • Rampen SW, Volkman JK, Hur SB, Abbas BA, Schouten S, Jameson ID, Holdsworth DG, Bae JH, Sinninghe Damsté JS (2009c) Occurrence of gorgosterol in diatoms of the genus Delphineis. Org Geochem 40:144–147

    Article  CAS  Google Scholar 

  • Rampen SW, Abbas BA, Schouten S, Sinninghe Damsté JS (2010) A comprehensive study of sterols in marine diatoms (Bacillariophyta): implications for their use as tracers for diatom productivity. Limnol Oceanogr 55:91–105

    Article  CAS  Google Scholar 

  • Rauter AP, Filipe MM, Prata C, Noronha JP, Sampayo MAM, Justino J, Bermejo J (2005) A new dihydroxysterol from the marine phytoplankton Diacronema sp. Fitoterapia 76:433–438

    Article  CAS  PubMed  Google Scholar 

  • Rohmer M, Brandt RD (1973) Les stérols et leur précurseurs chez Astasia longa Pringsheim. Eur J Biochem 36:446–454

    Article  CAS  PubMed  Google Scholar 

  • Rohmer M, Kokke WCMC, Fenical W, Djerassi C (1980) Isolation of two new C30 sterols, 24(E)-n-propylidenecholesterol and 24-n-propylcholesterol, from a cultured chrysophyte. Steroids 35:219–231

    Article  CAS  PubMed  Google Scholar 

  • Rontani JF, Beker B, Volkman JK (2004) Long-chain alkenones and related compounds in the benthic haptophyte Chrysotila lamellosa Anand HAP 17. Phytochemistry 65:117–126

    Article  CAS  PubMed  Google Scholar 

  • Rubinstein I, Goad LJ (1974) Occurrence of (24S)-24-methylcholesta-5,22E-dien-3β-ol in the diatom Phaeodactylum tricornutum. Phytochemistry 13:485–487

    Article  CAS  Google Scholar 

  • Seenivasan R, Sausen N, Medlin LK, Melkonian M (2013) Picomonas judraskeda gen. et sp. nov.: the first identified member of the Picozoa phylum nov., a widespread group of picoeukaryotes, formerly known as ‘picobiliphytes’. PLoS One 8(3):e59565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu Y, Alam M, Kobayashi A (1976) Dinosterol, the major sterol with a unique side-chain in the toxic dinoflagellate, Gonyaulax tamarensis. J Am Chem Soc 98:1059–1060

    Article  CAS  PubMed  Google Scholar 

  • Soma Y, Tani Y, Soma M, Mitake H, Kurihara R, Hashomoto S, Watanabe T, Nakamura T (2007) Sedimentary steryl chlorin esters (SCEs) and other photosynthetic pigments as indicators of paleolimnological change over the last 28,000 years from the Buguldeika saddle of Lake Baikal. J Paleolimnol 37:163–175

    Article  Google Scholar 

  • Summons RE, Jahnke LL, Cullings KW, Logan GA (2001) Cyanobacterial biomarkers: triterpenoids plus steroids? Eos Trans AGU 82(47), Fall Meeting Supplement, Abstract B22D-0184

    Google Scholar 

  • Teshima SI, Kanazawa A, Tago A (1980) Sterols of the dinoflagellate, Noctiluca milialis. Mem Fac Fish Hokkaido Univ 29:319–326

    CAS  Google Scholar 

  • Thompson RH, Patterson G, Thompson MJ, Slover HT (1981) Separation of pairs of C-24 epimeric sterols by glass capillary gas liquid chromatography. Lipids 16:694–699

    Article  CAS  Google Scholar 

  • Throndsen J (1976) Occurrence and productivity of small marine flagellates. Nor J Bot 23:269–193

    Google Scholar 

  • Véron B, Dauguet J-C, Billard C (1996) Sterolic biomarkers in marine phytoplankton. II. Free and conjugated sterols of seven species used in mariculture. J Phycol 34:273–279

    Article  Google Scholar 

  • Volkman JK (1986) A review of sterol markers for marine and terrigenous organic matter. Org Geochem 9:83–99

    Article  CAS  Google Scholar 

  • Volkman JK (2003) Sterols in microorganisms. Appl Microbiol Biotechnol 60:495–506

    Article  CAS  PubMed  Google Scholar 

  • Volkman JK (2005) Sterols and other triterpenoids: source specificity and evolution of biosynthetic pathways. Org Geochem 36:139–159

    Article  CAS  Google Scholar 

  • Volkman JK, Eglinton G, Corner EDS (1980a) Sterols and fatty acids of the marine diatom Biddulphia sinensis. Phytochemistry 19:1809–1813

    Article  CAS  Google Scholar 

  • Volkman JK, Eglinton G, Corner EDS, Sargent JR (1980b) Novel unsaturated straight-chain C37-C39 methyl and ethyl ketones in marine sediments and a coccolithophorid Emiliania huxleyi. In: Douglas AG, Maxwell JR (eds) Advances in organic geochemistry 1979. Pergamon Press, Oxford, pp 219–227

    Google Scholar 

  • Volkman JK, Smith DJ, Eglinton G, Forsberg TE, Corner EDS (1981) Sterol and fatty acid composition of four marine haptophycean algae. J Mar Biol Assoc UK 61:509–527

    Article  CAS  Google Scholar 

  • Volkman JK, Kearney P, Jeffrey SW (1990) A new source of 4-methyl sterols and 5α(H)-stanols in sediments: prymnesiophyte microalgae of the genus Pavlova. Org Geochem 15:489–497

    Article  CAS  Google Scholar 

  • Volkman JK, Barrett SM, Dunstan GA, Jeffrey SW (1992) C30-C32 alkyl diols and unsaturated alcohols in microalgae of the class Eustigmatophyceae. Org Geochem 18:131–138

    Article  CAS  Google Scholar 

  • Volkman JK, Barrett SM, Dunstan GA, Jeffrey SW (1993) Geochemical significance of the occurrence of dinosterol and other 4-methyl sterols in a marine diatom. Org Geochem 20:7–15

    Article  CAS  Google Scholar 

  • Volkman JK, Barrett SM, Dunstan GA, Jeffrey SW (1994) Sterol biomarkers for microalgae from the green algal class Prasinophyceae. Org Geochem 21:1211–1218

    Article  CAS  Google Scholar 

  • Volkman JK, Barrett SM, Blackburn SI, Sikes EL (1995) Alkenones in Gephyrocapsa oceanica: implications for studies of paleoclimate. Geochim Cosmochim Acta 59:513–520

    Article  CAS  Google Scholar 

  • Volkman JK, Farmer CL, Barrett SM, Sikes EL (1997) Unusual dihydroxysterols as chemotaxonomic markers for microalgae from the order Pavlovales (Haptophyceae). J Phycol 33:1016–1023

    Article  CAS  Google Scholar 

  • Volkman JK, Barrett SM, Blackburn SI, Mansour MP, Sikes EL, Gelin F (1998) Microalgal biomarkers: a review of recent research developments. Org Geochem 29:1163–1179

    Article  CAS  Google Scholar 

  • Volkman JK, Barrett SM, Blackburn SI (1999a) Eustigmatophyte microalgae are potential sources of C29 sterols, C22-C28 n-alcohols and C28-C32 n-alkyl diols in freshwater environments. Org Geochem 30:307–318

    Article  CAS  Google Scholar 

  • Volkman JK, Rijpstra WIC, de Leeuw JW, Mansour MP, Jackson AE, Blackburn SI (1999b) Sterols of four dinoflagellates from the genus Prorocentrum. Phytochemistry 52:659–668

    Article  CAS  Google Scholar 

  • Wengrovitz PS, Sanduja R, Alam M (1981) Dinoflagellate sterols. 3. Sterol composition of the dinoflagellate Gonyaulax monilata. Comp Biochem Physiol B 69:535–539

    Google Scholar 

  • Withers N (1987) Dinoflagellate sterols. In: Taylor FJR (ed) The biology of dinoflagellates. Blackwell Scientific, Oxford, pp 316–359

    Google Scholar 

  • Withers NW, Tuttle RC, Holz GG, Beach DH, Goad LJ, Goodwin TW (1978) Dehydrodinosterol, dinosterone and related sterols of a non-photosynthetic dinoflagellate Crypthecodinium cohnii. Phytochemistry 17:1987–1989

    Article  CAS  Google Scholar 

  • Withers NW, Kokke WCMC, Rohmer M, Fenical WH, Djerassi C (1979) Isolation of sterols with cyclopropyl-containing side chains from the cultured marine alga Peridinium foliaceum. Tetrahedon Lett 38:3605–3608

    Article  Google Scholar 

  • Wright JLC, McInnes AG, Shimizu S, Smith DG, Walte JA, Idler D, Khalil W (1978) Identification of C-24 alkyl epimers of marine sterols by 13C nuclear magnetic resonance spectroscopy. Can J Chem 56:1898–1903

    Article  CAS  Google Scholar 

  • Xue ZY, Duan LX, Liu D, Guo J, Ge S, Dicks JO, Omaille P, Osbourn A, Qi XQ (2012) Divergent evolution of oxidosqualene cyclases in plants. New Phytol 193:1022–1038

    Article  CAS  PubMed  Google Scholar 

  • Zielinski J, Kokke WCMC, Fenical W, Djerassi C (1982) Sterols of the cultured euglenoid Eutreptia viridis: a novel Δ23-unsaturated sterol. Steroids 40:403–411

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank Dr Susan Blackburn, Ian Jameson and staff of the Australian National Algae Culture Collection at CSIRO in Hobart for providing algal cultures over many years that have led to many new findings about the lipids in microalgae. I also thank Dan Holdsworth, Graeme Dunstan and Stephanie Barrett for their analytical skills and Dr Roger Summons, Dr Shirley Jeffrey (deceased), Dr Jan de Leeuw, Dr Jaap Sinninghe Damsté, Dr Sebastiaan Rampen, Dr G.W. Patterson and Dr L.J. Goad for helpful discussions over the years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John K. Volkman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Volkman, J.K. (2016). Sterols in Microalgae. In: Borowitzka, M., Beardall, J., Raven, J. (eds) The Physiology of Microalgae. Developments in Applied Phycology, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-24945-2_19

Download citation

Publish with us

Policies and ethics