Skip to main content

Micronutrients

  • Chapter
  • First Online:

Part of the book series: Developments in Applied Phycology ((DAPH,volume 6))

Abstract

Our understanding of the types, amounts, and roles of micronutrients (that is, iron, manganese, zinc, copper, molybdenum, cobalt, vanadium and nickel) in microalgae has expanded enormously in the last few decades, as has our ability to measure and decipher their activities, fate and behavior in both cells and their surrounding environment. The ability to acquire (uptake) and eliminate (efflux) micronutrients is a physiological trait that varies between taxa and can be linked to evolutionary histories and changes in ocean chemistry. The evolutionary inheritance hypothesis examines the imprint of endosymbiosis on the elemental stoichiometry of microalgae; their rich and diverse polyphyletic origins are retained such that species-specific traits play an important role in determining the micronutrient quota’s (intracellular concentrations), their response to different environmental perturbations including upwelling and pollution, and consequently successional patterns, community composition and/or competition. While some all the micronutrients discussed have a nutritional role, some may also be toxic if accumulated in excess of a cells requirements. In other instances, some micronutrients have been found to be replaceable or exchangeable, in the metallo centers of enzymes, but not in all microalgae. Micronutrients thereby function in the presence of other micronutrients and are affected by them, these synergistic and antagonistic interactions, are concurrently influenced by macronutrients and a variety of anthropogenic and emergent pollutants (specifically engineered nanoparticles and nanomaterials), which we also discuss. Anthropogenic inputs of micronutrients to the environment exceed inputs from natural sources. As a result, there has been a concurrent impact on the biota, altering ecological stoichiometries, food webs and trophic movement of these elements. We also discuss the importance of light and increasing CO2 concentrations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Wherever possible the currently accepted names for species are used. The name used in the paper cited is also indicated. For details of names see chapter “Systematics, Taxonomy and Species Names: Do They Matter?” of this book (Borowitzka 2016).

  2. 2.

    See Harrison et al. (1989) for definition.

References

  • Ahner BA, Morel FMM (1995) Phytochelatin production in marine algae: II. Induction by various metals. Limnol Oceanogr 40:658–665

    Article  CAS  Google Scholar 

  • Allen MB, Arnon DI (1955) Studies on nitrogen-fixing blue-green algae. I. growth and nitrogen fixation by Anabaena cylindrica Lemm. Plant Physiol 30:366–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altman H, Fetter F, Kaindl K (1968) Untersuchungen über den einfluss von Zn-lonen auf die m-RNA synthese in Chlorella Zellen. Z Naturforsch 23b:395–396

    Google Scholar 

  • Anbar AD, Knoll AH (2002) Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science 297:1137–1142

    Article  CAS  PubMed  Google Scholar 

  • Anderson MA, Morel FMM, Guillard RRL (1978) Growth limitation of a coastal diatom by low zinc ion activity. Nature 276:70–71

    Article  CAS  Google Scholar 

  • Araie H, Shiraiwa Y (2016) Selenium in algae. In: Borowitzka MA, Beardall J, Raven JA (eds) Physiology of microalgae. Springer, Dordrecht, pp 281–288

    Google Scholar 

  • Arnon DI (1953) Growth and function as criteria in determining the essential nature of inorganic nutrients. In: Truog E (ed) Mineral nutrition of plants. University Wisconsin Press, Wisconsin, pp 313–341

    Google Scholar 

  • Arnon DI, Ichioka PS (1955) Molybdenum in relation to nitrogen metabolism. II. Assimilation of ammonia and urea without molybdenum by Scenedesmus. Physiol Plant 8:552–560

    Article  Google Scholar 

  • Arnon DI, Wessel G (1953) Vanadium as an essential element for green plants. Nature 172:1039–1040

    Article  CAS  PubMed  Google Scholar 

  • Arnon DI, Ichioka PS, Wessel G, Fujiwara A, Woolley JT (1955) Molybdenum in relation to nitrogen metabolism. I. Assimilation of nitrate nitrogen by Scenedesmus. Physiol Plant 8:538–551

    Article  CAS  Google Scholar 

  • Beardall J, Raven JA (2016) Carbon acquisition by microalgae. In: Borowitzka MA, Beardall J, Raven JA (eds) Physiology of microalgae. Springer, Dordrecht, pp 89–99

    Google Scholar 

  • Beardall J, Sobrino C, Stojkovic S (2009) Interactions between the impacts of ultraviolet radiation, elevated CO2, and nutrient limitation on marine primary producers. Photochem Photobiol Sci 8:1257–1265

    Article  CAS  PubMed  Google Scholar 

  • Berman-Frank I, Quigg A, Finkel ZV, Irwin AJ, Haramaty L (2007) Nitrogen-fixation strategies and Fe requirements in cyanobacteria. Limnol Oceanogr 52:2260–2269

    Article  Google Scholar 

  • Bishop NI (1964) Site of action of copper in photosynthesis. Nature 204:401–402

    Article  CAS  Google Scholar 

  • Boison G, Steingen C, Stal LJ, Bothe H (2006) The rice field cyanobacteria Anabaena azotica and Anabaena sp. CH1 express vanadium-dependent nitrogenase. Arch Microbiol 186:367–376

    Article  CAS  PubMed  Google Scholar 

  • Borowitzka MA (2016) Systematics, taxonomy and species names: do they matter? In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 655–681

    Google Scholar 

  • Bortels H (1940) Über die Bedeutung des Molybdäns für stickstoffbindende Nostocaceen. Arch Mikrobiol 11:155–186

    Article  CAS  Google Scholar 

  • Bradshaw C, Kautsky U, Kumblad L (2012) Ecological stoichiometry and multielement transfer in a coastal ecosystem. Ecosystems 15:591–603

    Article  CAS  Google Scholar 

  • Brand LE, Sunda WG, Guillard RRL (1983) Limitation of marine phytoplankton reproductive rates by zinc, manganese, and iron. Limnol Oceanogr 28:1182–1198

    Article  CAS  Google Scholar 

  • Brand LE, Sunda WG, Guillard RRL (1986) Reduction of marine phytoplankton reproduction rates by copper and cadmium. J Exp Mar Biol Ecol 96:225–250

    Article  CAS  Google Scholar 

  • Bruland KW (1980) Oceanographic distributions of cadmium, zinc, nickel, and copper in the North Pacific. Earth Planet Sci Lett 47:176–198

    Article  CAS  Google Scholar 

  • Bruland KW, Donat JR, Hutchins DA (1991) Interactive influences of bioactive trace metals on biological production in oceanic waters. Limnol Oceanogr 36:1555–1577

    Article  CAS  Google Scholar 

  • Butler A (1998) Acquisition and utilization of transition metal ions by marine organisms. Science 281:207–210

    Article  CAS  PubMed  Google Scholar 

  • Campbell PGC (1995) Interactions between trace metals and aquatic organisms: a critique of the free ion activity model. In: Tessier A, Turner DR (eds) Metal speciation and bioavailability in aquatic systems. Wiley, Chichester, pp 45–102

    Google Scholar 

  • Campbell PG, Errecalde O, Fortin C, Hiriart-Baer VP, Vigneault B (2002) Metal bioavailability to phytoplankton-applicability of the biotic ligand model. Comp Biochem Physiol C 133:189–206

    Google Scholar 

  • Cannon WB (1932) The wisdom of the body. W.W. Norton and Company, New York, 294 pp

    Google Scholar 

  • Chen C-S, Anaya JM, Zhang S, Spurgin J, Chuang C-Y, Xu C, Miao A-J, Chen X, Schwehr KA, Jiang Y, Quigg A, Santschi PH, Chin W-C (2011) Effects of engineered nanoparticles on the assembly of exopolymeric substances from marine phytoplankton. PLoS One 6(7): e21865. doi:10.1371/journal.pone.0021865

    Google Scholar 

  • Cheniae GM, Martin JF (1969) Photoreactivation of manganese catalyst in photosynthetic oxygen evolution. Plant Physiol 44:351–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collier RW (1985) Molybdenum in the northeast Pacific Ocean. Limnol Oceanogr 30:1351–1354

    Article  CAS  Google Scholar 

  • Crawford DW, Lipsen MS, Purdie DA, Lohan MC, Statham PJ, Whitney FA, Putland JN, Johnson WK, Sutherland N, Peterson TD, Harrison PJ, Wong CS (2003) Influence of zinc and iron enrichments on phytoplankton growth in the northeastern subarctic Pacific. Limnol Oceanogr 48:1583–1600

    Article  CAS  Google Scholar 

  • Croot PL, Moffett JW, Brand LE (2000) Production of extracellular Cu complexing ligands by eukaryotic phytoplankton in response to Cu stress. Limnol Oceanogr 45:619–627

    Article  CAS  Google Scholar 

  • Croot PL, Karlson B, van Elteren JT, Kroon JJ (2003) Uptake and efflux of 64Cu by the marine cyanobacterium Synechococcus (WH7803). Limnol Oceanogr 48:179–188

    Article  CAS  Google Scholar 

  • Cullen JT, Lane TW, Morel FMM, Sherrell RM (1999) Modulation of cadmium uptake in phytoplankton by seawater CO2 concentration. Nature 402:165–167

    Article  CAS  Google Scholar 

  • Cvetkovic A, Menon AL, Thorgersen MP, Scott JW, Poole FL 2nd, Jenney FE Jr, Lancaster WA, Praissman JL, Shanmukh S, Vaccaro BJ, Trauger SA, Kalisiak E, Apon JV, Siuzdak G, Yannone SM, Tainer JA, Adams MW (2010) Microbial metalloproteomes are largely uncharacterized. Nature 466:779–882

    Article  CAS  PubMed  Google Scholar 

  • Delwiche CF (1999) Tracing the thread of plastid diversity through the tapestry of life. Am Nat 154:S164–S177

    Article  PubMed  Google Scholar 

  • Dupont CL, Barbeau K, Palenik B (2007) Ni uptake and limitation in marine Synechococcus. Appl Environ Microbiol 74:23–31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dupont CL, Butcher A, Valas RE, Bourne PE, Caetano-Anolles G (2010) History of biological metal utilization inferred through phylogenomic analysis of protein structures. Proc Natl Acad Sci U S A 107:10567–10572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dyhrman ST (2016) Nutrients and their acquisition: phosphorus physiology in microalgae. In: Borowitzka MA, Beardall J, Raven JA (eds) Physiology of microalgae. Springer, Dordrecht, pp 155–183

    Google Scholar 

  • Dyhrman ST, Anderson DM (2003) Urease activity in cultures and field populations of the toxic dinoflagellate Alexandrium. Limnol Oceanogr 48:647–655

    Article  CAS  Google Scholar 

  • Eilers H (1926) Zur kenntnis der Ernährungsphysiologie von Stichococcus bacillaris Näg. Rec Trav Bot Neerl 23:362–395

    Google Scholar 

  • Errecalde O, Campbell PGC (2000) Cadmium and zinc bioavailability to Selenastrum capricornutum (Chlorophyceae): accidental metal uptake and toxicity in the presence of citrate. J Phycol 36:473–483

    Article  CAS  Google Scholar 

  • Falchuk KH, Krishan A, Vallee BL (1975) DNA distribution in the cell cycle of Euglena gracilis. Cytofluorometry of zinc deficient cells. Biochemistry 14:3439–3444

    Article  CAS  PubMed  Google Scholar 

  • Falkowski PG (1997) Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387:272–275

    Article  CAS  Google Scholar 

  • Falkowski PG, Raven JA (1997) Aquatic photosynthesis. Blackwell Scientific Publishers, Oxford, 375 pp

    Google Scholar 

  • Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor FJR (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354–360

    Article  CAS  PubMed  Google Scholar 

  • Fay P, Vasconcelos L (1974) Nitrogen metabolism and ultrastructure in Anabaena cylindrica. 2. Effect of molybdenum and vanadium. Arch Microbiol 99:221–230

    Article  CAS  PubMed  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838

    Article  CAS  PubMed  Google Scholar 

  • Finkel ZV (2016) Silicification in the microalgae. In: Borowitzka MA, Beardall J, Raven JA (eds) Physiology of microalgae. Springer, Dordrecht, pp 289–300

    Google Scholar 

  • Finkel ZV, Quigg A, Raven JA, Reinfelder JR, Schofield OE, Falkowski PG (2006) Irradiance and the elemental stoichiometry of marine phytoplankton. Limnol Oceanogr 51:2690–2701

    Article  CAS  Google Scholar 

  • Finkel ZV, Quigg A, Chiampi RK, Schofield OE, Falkowski PG (2007) Phylogenetic diversity in Cd:P regulation by marine phytoplankton. Limnol Oceanogr 52:1131–1138

    Article  CAS  Google Scholar 

  • Finkel ZV, Beardall J, Flynn KJ, Quigg A, Rees TAV, Raven JA (2010) Phytoplankton in a changing world: cell size and elemental stoichiometry. J Plankton Res 32:119–137

    Article  CAS  Google Scholar 

  • Fortin C, Campbell PG (2001) Thiosulfate enhances silver uptake by a green alga: role of anion transporters in metal uptake. Environ Sci Technol 35:2214–2218

    Article  CAS  PubMed  Google Scholar 

  • Foster PL (1977) Copper exclusion as a mechanism of heavy metal tolerance in a green alga. Nature 269:322–323

    Article  CAS  Google Scholar 

  • Franklin NM, Stauber JL, Apte SC, Lim RP (2002) Effect of initial cell density on the bioavailability and toxicity of copper in microalgal bioassays. Environ Toxicol Chem 21:742–751

    Article  CAS  PubMed  Google Scholar 

  • Frausto da Silva JRR, Williams RJP (2001) The biological chemistry of the elements: the inorganic chemistry of life, 2nd edn. Oxford University Press, Oxford, 600 pp

    Google Scholar 

  • Glass JB, Wolfe-Simon F, Anbar AD (2009) Coevolution of marine metal availability and nitrogen assimilation in cyanobacteria and algae. Geobiology 7:100–123

    Article  CAS  PubMed  Google Scholar 

  • Glass JB, Wolfe-Simon F, Elser JJ, Anbar AD (2010) Molybdenum-nitrogen colimitation in heterocystous cyanobacteria. Limnol Oceanogr 55:667–676

    Article  CAS  Google Scholar 

  • Gong N, Chen C, Xie L, Chen H, Lin X, Zhang R (2005) Characterization of a thermostable alkaline phosphatase from a novel species Thermus yunnanensis sp. nov. and investigation of its cobalt activation at high temperature. Biochim Biophys Acta 1750:103–111

    Article  CAS  PubMed  Google Scholar 

  • Guseva KA (1940) Dyeystvye myedi na vodoroslei. Mikrobiologie 9:480–499

    CAS  Google Scholar 

  • Hallenbeck PC, Kostel PJ, Benemann JR (1979) Purification and properties of nitrogenase from the cyanobacterium Anabaena cylindrica. Eur J Biochem 98:275–284

    Article  CAS  PubMed  Google Scholar 

  • Harrison PJ, Parslow JS, Conway HL (1989) Determination of nutrient uptake kinetic parameters: a comparison of methods. Mar Ecol Prog Ser 52:301–312

    Article  Google Scholar 

  • Hassler CS, Wilkinson KJ (2003) Failure of the biotic ligand and free-ion activity models to explain zinc bioaccumulation by Chlorella kesslerii. Environ Toxicol Chem 22:620–626

    Article  CAS  PubMed  Google Scholar 

  • Hassler CS, Behra R, Wilkinson KJ (2005) Impact of zinc acclimation on bioaccumulation and homeostasis in Chlorella kesslerii. Aquat Toxicol 74:139–149

    Article  CAS  PubMed  Google Scholar 

  • Heijerick DG, De Schamphelaere KA, Janssen CR (2002) Biotic ligand model development predicting Zn toxicity to the alga Pseudokirchneriella subcapitata: possibilities and limitations. Comp Biochem Physiol C 133:207–218

    CAS  Google Scholar 

  • Hill KL, Hassett R, Kosman D, Merchant S (1996) Regulated copper uptake in Chlamydomonas reinhardtii in response to copper availability. Plant Physiol 112:697–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho T-Y, Quigg A, Finkel ZV, Milligan AJ, Wyman K, Falkowski PG, Morel FMM (2003) The elemental composition of some marine phytoplankton. J Phycol 39:1145–1159

    Article  CAS  Google Scholar 

  • Ho T-Y, Chou W-C, Wei C-L, Lin F-J, Wong GTF, Lin H-L (2010) Trace metal cycling in the surface water of the South China Sea: vertical fluxes, composition, and sources. Limnol Oceanogr 55:1807–1820

    Article  CAS  Google Scholar 

  • Hoffman BM, Lukoyanov D, Yang Z-Y, Dean DR, Seefeldt LC (2014) Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem Rev 114:4041–4062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holm-Hansen O, Gerloff GC, Skoog F (1954) Cobalt as an essential element for blue-green algae. Physiol Plant 7:665–675

    Article  CAS  Google Scholar 

  • Hopkins EF (1930) The necessity and function of manganese in the growth of Chorella sp. Science 72:609–610

    Article  CAS  PubMed  Google Scholar 

  • Hou W-C, Westerhoff P, Posner JD (2013) Biological accumulation of engineered nanomaterials: a review of current knowledge. Environ Sci Process Impact 15:103–122

    Article  CAS  Google Scholar 

  • Howarth RW, Marino R, Cole JJ (1988) Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 2. Biogeochemical controls. Limnol Oceanogr 33:688–701

    Article  CAS  Google Scholar 

  • Hudson RJM (1998) Which aqueous species control the rates of trace metal uptake by aquatic biota? Observations and predictions of nonequilibrium effects. Sci Total Environ 219:95–115

    Article  CAS  Google Scholar 

  • Hudson RJM, Morel FMM (1993) Trace metal transport by marine microorganisms: implications of metal coordination kinetics. Deep-Sea Res I 40:129–150

    Article  CAS  Google Scholar 

  • Hutner SH, Provasoli L, Stockstad ELR, Hoffman CE, Belt M, Franklin AL, Jukes JH (1949) Assay of antipernicious anemia factor with Euglena. Proc Soc Exp Biol Med 70:117–120

    Article  Google Scholar 

  • Jacob R, Lind O (1977) The combined relationship of temperature and molybdenum concentration to nitrogen fixation by Anabaena cylindrica. Microb Ecol 3:205–217

    Article  Google Scholar 

  • Jakuba RW, Moffett JW, Dyhrman ST (2008) Evidence for the linked biogeochemical cycling of zinc, cobalt, and phosphorus in the western North Atlantic Ocean. Glob Biogeochem Cycles 22, GB4012

    Article  CAS  Google Scholar 

  • Ji YC, Sherrell RM (2008) Differential effects of phosphorus limitation on cellular metals in Chlorella and Microcystis. Limnol Oceanogr 53:1790–1804

    Article  CAS  Google Scholar 

  • Katoh S, Sugi I, Shiratori I, Takamiya I (1961) Distribution of plastocyanin in plants, with special reference to its localization in chloroplasts. Arch Biochem Biophys 94:136–141

    Article  CAS  PubMed  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TE, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanoparticles in the environment: behavior, fate, bioavailability and effects. Environ Toxicol Chem 27:1825–1851

    Article  CAS  PubMed  Google Scholar 

  • Knauer K, Behra R, Sigg L (1997) Adsorption and uptake of copper by the green alga Scenedesmus subspicatus (Chlorophyta). J Phycol 33:596–601

    Article  CAS  Google Scholar 

  • Kola H, Wilkinson KJ (2005) Cadmium uptake by a green alga can be predicted by equilibrium modeling. Environ Sci Technol 39:3040–3047

    Article  CAS  PubMed  Google Scholar 

  • Kumblad L, Bradshaw C (2008) Element composition of biota, water and sediment in the Forsmark area, Baltic Sea. Concentrations, bioconcentration factors and partitioning coefficients (Kd) of 48 elements. Svensk Kärnbränslehantering AB, SKB TR-08-09, Stockholm, Sweden, Report, 109 pp

    Google Scholar 

  • Kuss J, Kremling K (1999) Spatial variability of particle associated trace elements in near-surface waters of the North Atlantic (30°N/60°W to 60°N/2°W) derived by large volume sampling. Mar Chem 68:71–86

    Article  CAS  Google Scholar 

  • La Fontaine S, Quinn JM, Nakamoto SS, Page MD, Göhre V, Moseley JL, Kropat J, Merchant S (2002) Copper-dependent iron assimilation pathway in the model photosynthetic eukaryote Chlamydomonas reinhardtii. Eukaryot Cell 1:736–757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lane TW, Saito MA, George GN, Pickering IJ, Prince RC, Morel FMM (2005) A cadmium enzyme from a marine diatom. Nature 435:42

    Article  CAS  PubMed  Google Scholar 

  • Larkum AW (2016) Photosynthesis and light harvesting in algae. In: Borowitzka MA, Beardall J, Raven JA (eds) Physiology of microalgae. Springer, Dordrecht, pp 67–87

    Google Scholar 

  • LaRoche J, Boyd PW, McKay RML, Geider RJ (1996) Flavodoxin as an in situ marker for iron stress in phytoplankton. Nature 382:802–805

    Article  CAS  Google Scholar 

  • Le Faucheur S, Behra R, Sigg L (2005) Phytochelatin induction, cadmium accumulation, and algal sensitivity to free cadmium ion in Scenedesmus vacuolatus. Environ Toxicol Chem 24:1731–1737

    Article  PubMed  Google Scholar 

  • Lee JG, Morel FMM (1995) Replacement of Zinc by cadmium in marine phytoplankton. Mar Ecol Prog Ser 127:305–309

    Article  CAS  Google Scholar 

  • Lee JG, Ahner BA, Morel FMM (1996) Export of cadmium and phytochelatin by the marine diatom Thalassiosira weissflogii. Environ Sci Technol 30:1814–1821

    Article  CAS  Google Scholar 

  • Lemaire S, Kreyer E, Stein M, Schepens I, Issakidis-Bourguet E, Gérard-Hirne C, Miginiac-Maslow M, Jacquot J-P (1999) Heavy-metal regulation of thioredoxin gene expression in Chlamydomonas reinhardtii. Plant Physiol 120:773–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luoma SN (2008) Silver nanotechnologies and the environment: old problems or new challenges? Woodrow Wilson International Center for Scholars, Report PEN 15, Washington DC, USA, 68 pp

    Google Scholar 

  • Ma H, Williams PL, Stephen A (2013) Ecotoxicity of manufactured ZnO nanoparticles: a review. Environ Pollut 172:76–85

    Article  CAS  PubMed  Google Scholar 

  • Maldonado MT, Allen AE, Chong JS, Lin K, Leus D, Karpenko N, Harris SL (2006) Copper-dependent iron transport in coastal and oceanic diatoms. Limnol Oceanogr 51:1729–1743

    Article  CAS  Google Scholar 

  • Marchetti A, Maldonado MT (2016) Iron. In: Borowitzka MA, Beardall J, Raven JA (eds) Physiology of microalgae. Springer, Dordrecht, pp 233–279

    Google Scholar 

  • Markowitz VM, Szeto E, Palaniappan K, Grechkin Y, Chu K, Chen I-MA, Dubchak I, Anderson I, Lykidis A, Mavromatis K, Ivanova NN, Kyrpides NC (2008) The integrated microbial genomes (IMG) system in 2007: data content and analysis tool extensions. Nucleic Acids Res 36:D528–D533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin JH, Fitzwater SE (1988) Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature 331:341–343

    Article  CAS  Google Scholar 

  • Martin JH, Knauer GA (1973) Elemental composition of plankton. Geochim Cosmochim Acta 37:1639–1653

    Article  CAS  Google Scholar 

  • Martin RE, Quigg A (2013) The tiny plants that once ruled the seas. Sci Am 308:40–45

    Article  PubMed  Google Scholar 

  • Martin JH, Gordon RM, Fitzwater SE (1991) The case for iron. Limnol Oceanogr 36:1793–1802

    Article  Google Scholar 

  • Martin RE, Quigg A, Podkovyrov V (2008) The evolution of ocean stoichiometry and diversification of the marine biosphere. Palaeogeogr Palaeoclimatol Palaeoecol 258:277–291

    Article  Google Scholar 

  • McKay RML, La Roche J, Yakunin AF, Durnford DG, Geider RJ (1999) Accumulation of ferredoxin and flavodoxin in a marine diatom in response to Fe. J Phycol 35:510–519

    Article  CAS  Google Scholar 

  • Mendez-Alvarez S, Leisinger U, Eggen RL (1999) Adaptative responses in Chlamydomonas reinhardtii. Int Microbiol 2:15–22

    CAS  PubMed  Google Scholar 

  • Messinger J, Nugent JHA, Evans MCW (1997) Detection of an EPR multiline signal for the S0 state in photosystem II. Biochemistry 36:11055–11060

    Article  CAS  PubMed  Google Scholar 

  • Miao A-J, Wang WX (2004) Relationships between cell-specific growth rate and uptake rate of cadmium and zinc by a coastal diatom. Mar Ecol Prog Ser 275:103–113

    Article  CAS  Google Scholar 

  • Miao A-J, Schwehr KA, Xu C, Zhang S-J, Luo Z, Quigg A, Santschi PH (2009) The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environ Pollut 157:3034–3041

    Article  CAS  PubMed  Google Scholar 

  • Miao A-J, Luo Z, Chen C-S, Chin W-C, Santschi PH, Quigg A (2010a) Intracellular uptake: A possible mechanism for silver engineered nanoparticle toxicity to a freshwater alga Ochromonas danica. PLoS One 5, e15196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao A-J, Luo A, Chen C-S, Chin W-C, Santschi PH, Quigg A (2010b) Zinc oxide-engineered nanoparticles: dissolution and toxicity to marine phytoplankton. Environ Toxicol Chem 29:2814–2822

    Article  CAS  PubMed  Google Scholar 

  • Mikami B, Ida S (1984) Purification and properties of ferredoxin nitrate reductase from the cyanobacterium Plectonema boryanum. Biochem Biophys Acta 791:294–304

    CAS  Google Scholar 

  • Moffett JW, Brand LE (1996) Production of strong, extracellular Cu chelators by marine cyanobacteria in response to Cu stress. Limnol Oceanogr 41:388–395

    Article  CAS  Google Scholar 

  • Moffett JW, Dupont C (2007) Cu complexation by organic ligands in the subarctic NW Pacific and Bering Sea. Deep-Sea Res I 54:586–595

    Article  CAS  Google Scholar 

  • Moffett JW, Brand LE, Zika RG (1990) Distribution and potential sources and sinks of copper chelators in the Sargasso Sea. Deep-Sea Res 37:27–36

    Article  CAS  Google Scholar 

  • Morel FMM, Hudson RJM (1985) The geobiological cycle of trace elements in aquatic systems: Redfield revisited. In: Stumm W (ed) Chemical processes in lakes. Wiley-Interscience, New York, pp 251–281

    Google Scholar 

  • Morel FMM, Price NM (2003) The biogeochemical cycles of trace metals in the oceans. Science 300:944–947

    Article  CAS  PubMed  Google Scholar 

  • Morel FMM, Reinfelder JR, Roberts SB, Chamberlain CP, Lee JG, Yee D (1994) Zinc and carbon co-limitation of marine phytoplankton. Nature 369:740–742

    Article  CAS  Google Scholar 

  • Morel FMM, Milligan AJ, Saito MA (2003) Marine bioinorganic chemistry: the role of trace of metals in the oceanic cycles of major nutrients. In: Turekian KK, Holland HD (eds) Treatise on geochemistry, vol 6. Elsevier, Cambridge, pp 113–143

    Chapter  Google Scholar 

  • Nagel K, Adelmeier U, Voight J (1996) Subcellular distribution of cadmium in the unicellular alga Chlamydomonas reinhardtii. J Plant Physiol 149:86–90

    Article  CAS  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NIB, Filser J, Miao A-J, Quigg A, Santschi PH, Sigg L (2008) Ecotoxicity of nanoparticles on algae, plants and fungi: state of the art and future needs. Spec Issue Ecotoxicol Chem Risk Assess Nanopart 17:372–386

    CAS  Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  PubMed  Google Scholar 

  • O’Kelley JC (1974) Inorganic nutrients. In: Stewart WD (ed) Algal physiology and biochemistry. Blackwell, Oxford, pp 610–635

    Google Scholar 

  • Payne CD, Price NM (1999) Effects of cadmium toxicity on growth and elemental composition of marine phytoplankton. J Phycol 35:293–302

    Article  CAS  Google Scholar 

  • Peers G, Price NM (2006) Copper-containing plastocyanin used for electron transport by an oceanic diatom. Nature 441:341–344

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro JP, van Leeuwen HP (2001) Metal speciation dynamics and bioavailability. 2. Radial diffusion effects in the microorganism range. Environ Sci Technol 35:894–900

    Article  CAS  PubMed  Google Scholar 

  • Prask JA, Plocke DJ (1971) A role for Zn in the structural integrity of the cytoplasmic ribosomes of Euglena gracilis. Plant Physiol 48:150–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Provasoli L, Carlucci AF (1974) Vitamins and growth regulators. In: Stewart WD (ed) Algal physiology and biochemistry. Blackwell, Oxford, pp 741–787

    Google Scholar 

  • Quigg A (2008) Trace elements. In: Jørgensen SE, Fath BD (eds) Ecological stoichiometry. Encyclopedia of ecology, vol 5. Elsevier, Oxford, pp 3564–3573

    Chapter  Google Scholar 

  • Quigg A, Finkel ZV, Irwin AJ, Rosenthal Y, Ho T-Y, Reinfelder JR, Schofield O, Morel FMM, Falkowski PG (2003a) The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Nature 425:291–294

    Article  CAS  PubMed  Google Scholar 

  • Quigg A, Beardall J, Wydrzynski T (2003b) An investigation of the photosynthetic O2-evolving reactions in two marine microalgae as a function of the photon flux during growth. Funct Plant Biol 30:301–308

    Article  Google Scholar 

  • Quigg A, Reinfelder JR, Fisher NS (2006) Copper-uptake kinetics in diverse marine phytoplankton. Limnol Oceanogr 51:893–899

    Article  CAS  Google Scholar 

  • Quigg A, Irwin AJ, Finkel ZV (2011) Evolutionary imprint of endosymbiosis of elemental stoichiometry: testing inheritance hypotheses. Proc R Soc Biol Sci 278:526–534

    Article  Google Scholar 

  • Quigg A, Chin W-C, Chen C-S, Zhang S, Jiang Y, Miao A-J, Schwehr KA, Xu C, Santschi PH (2013) Direct and indirect toxic effects of engineered nanoparticles on algae: role of natural organic matter. Spec Issue Sustain Nanotechnol ACS Sustain Chem Eng 1:686–702

    Article  CAS  Google Scholar 

  • Rao KVM (1963) The effect of molybdenum on the growth of Oocystis marssonii Lemm. Indian J Plant Physiol 6:142–149

    Google Scholar 

  • Raven JA (1988) The iron and molybdenum use efficiencies of plant growth with different energy, carbon and nitrogen sources. New Phytol 109:279–287

    Article  CAS  Google Scholar 

  • Raven JA (1990) Predictions of Mn and Fe use efficiencies of phototrophic growth as a function of light availability for growth and of C assimilation pathway. New Phytol 116:1–18

    Article  CAS  Google Scholar 

  • Raven JA, Giordano M (2016) Combined nitrogen. In: Borowitzka MA, Beardall J, Raven JA (eds) Physiology of microalgae. Springer, Dordrecht, pp 143–154

    Google Scholar 

  • Raven JA, Evans MCW, Korb RE (1999) The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynth Res 60:111–149

    Article  CAS  Google Scholar 

  • Redfield AC (1934) On the proportions of organic derivatives in sea water and their relation to the composition of plankton. In: Daniel RJ (ed) James Johnstone memorial volume. Liverpool University Press, Liverpool, pp 176–192

    Google Scholar 

  • Saito MA, Moffett JW, Chisholm SW, Waterbury JB (2002) Cobalt limitation and uptake in Prochlorococcus. Limnol Oceanogr 47:1629–1636

    Article  CAS  Google Scholar 

  • Scott CT, Lyons W, Bekker A, Shen Y, Poulton SW, Chu X, Anbar AD (2008) Tracing the stepwise oxygenation of the Proterozoic ocean. Nature 452:456–459

    Article  CAS  PubMed  Google Scholar 

  • Steele RL (1965) Induction of sexuality in two centric diatoms. Bioscience 15:298

    Article  Google Scholar 

  • Stewart WDP (ed) (1974) Algal physiology and biochemistry. University of California Press, Berkeley/Los Angeles, 998 pp

    Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton, 584 pp

    Google Scholar 

  • Strzepek RF, Harrison PJ (2004) Photosynthetic architecture differs in coastal and oceanic diatoms. Nature 431:689–692

    Article  CAS  PubMed  Google Scholar 

  • Sunda WG (1994) Trace metal/phytoplankton interactions in the sea. In: Bidoglio G, Stumm W (eds) Chemistry of aquatic systems: local and global perspectives. Kluwer, Dordrecht, pp 213–247

    Chapter  Google Scholar 

  • Sunda WG (2012) Feedback interactions between trace metal nutrients and phytoplankton in the ocean. Front Microbiol 3:1–22

    Google Scholar 

  • Sunda WG, Guillard RRL (1976) The relationship between cupric ion activity and the toxicity of copper to phytoplankton. J Mar Res 34:511–529

    CAS  Google Scholar 

  • Sunda WG, Huntsman SA (1992) Feedback interactions between zinc and phytoplankton in seawater. Limnol Oceanogr 37:25–40

    Article  CAS  Google Scholar 

  • Sunda WG, Huntsman SA (1995a) Cobalt and zinc interreplacement in marine phytoplankton: biological and geochemical implications. Limnol Oceanogr 40:1404–1417

    Article  CAS  Google Scholar 

  • Sunda WG, Huntsman SA (1995b) Regulation of copper concentration in the oceanic nutricline by phytoplankton uptake and regeneration cycles. Limnol Oceanogr 40:132–137

    Article  CAS  Google Scholar 

  • Sunda WG, Huntsman SA (1996) Antagonisms between cadmium and zinc toxicity and manganese limitation in a coastal diatom. Limnol Oceanogr 41:373–387

    Article  CAS  Google Scholar 

  • Sunda WG, Huntsman SA (1997) Interrelated influence of iron, light and cell size on marine phytoplankton growth. Nature 390:389–392

    Google Scholar 

  • Sunda WG, Huntsman SA (1998a) Processes regulating cellular metal accumulation and physiological effects: phytoplankton as model systems. Sci Total Environ 219:165–181

    Article  CAS  Google Scholar 

  • Sunda WG, Huntsman SA (1998b) Interactions among Cu2+, Zn2+, and Mn2+ in controlling cellular Mn, Zn, and growth rate in the coastal alga Chlamydomonas. Limnol Oceanogr 43:1055–1064

    Article  CAS  Google Scholar 

  • Sunda WG, Huntsman SA (1998c) Interactive effects of external manganese, the toxic metals copper and zinc, and light in controlling cellular manganese and growth in a coastal diatom. Limnol Oceanogr 43:1467–1475

    Article  CAS  Google Scholar 

  • Sunda WG, Huntsman SA (1998d) Control of Cd concentrations in a coastal diatom by interactions among free ionic Cd, Zn, and Mn in seawater. Environ Sci Technol 32:2961–2968

    Article  CAS  Google Scholar 

  • Sunda WG, Huntsman SA (2000) Effect of Zn, Mn, and Fe on Cd accumulation in phytoplankton: implications for oceanic Cd cycling. Limnol Oceanogr 45:1501–1516

    Article  CAS  Google Scholar 

  • Sunda WG, Huntsman SA (2004) Relationships among photoperiod, carbon fixation, growth, chlorophyll a, and cellular iron and zinc in a coastal diatom. Limnol Oceanogr 49:1742–1753

    Article  CAS  Google Scholar 

  • Sunda WG, Huntsman SA (2005) Effect of CO2 supply and demand on zinc uptake and growth limitation in a coastal diatom. Limnol Oceanogr 50:1181–1192

    Article  CAS  Google Scholar 

  • Sunda WG, Huntsman SA (2008) Relationships among growth rate, cellular manganese concentrations and manganese transport kinetics in estuarine and oceanic species of the diatom Thalassiosira. J Phycol 22:259–270

    Google Scholar 

  • Taylor AR, Brownlee C (2016) Calcification. In: Borowitzka MA, Beardall J, Raven JA (eds) Physiology of microalgae. Springer, Dordrecht, pp 301–318

    Google Scholar 

  • Teicheler-Zallen D (1969) The effect of manganese on chloroplast structure and photosynthetic ability of Chlamydomonas reinhardi. Plant Physiol 44:701–710

    Article  Google Scholar 

  • Ter Steeg PF, Hanson PJ, Paerl HW (1986) Growth limiting quantities and accumulation of molybdenum in Anabaena oscillarioides (Cyanobacteria). Hydrobiologia 140:143–147

    Article  Google Scholar 

  • Thiel T (1993) Characterization of genes for an alternative nitrogenase in the cyanobacterium Anabaena variabilis. J Bacteriol 175:6276–6286

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tomitani A, Knoll AH, Cavanaugh CM, Ohno T (2006) The evolutionary diversification of cyanobacteria: molecular-phylogenetic and paleontological perspectives. Proc Natl Acad Sci U S A 103:5442–5447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuit C, Waterbury J, Ravizza G (2004) Diel variation of molybdenum and iron in marine diazotrophic cyanobacteria. Limnol Oceanogr 49:978–990

    Article  CAS  Google Scholar 

  • Twining BS, Baines SB (2013) The trace metal composition of marine phytoplankton. Annu Rev Mar Sci 5:191–215

    Article  Google Scholar 

  • Twining BS, Nñnez-Milland D, Vogt S, Johnson RS, Sedwick PN (2010) Variations in Synechococcus cell quotas of phosphorus, sulfur, manganese, iron, nickel, and zinc within mesoscale eddies in the Sargasso Sea. Limnol Oceanogr 55:492–506

    Article  CAS  Google Scholar 

  • van Leeuwen HP (1999) Metal speciation dynamics and bioavailability: inert and labile complexes. Environ Sci Technol 33:3743–3748

    Article  CAS  Google Scholar 

  • Vega JM, Herrera J, Aparicio PJ, Paneque A, Losada M (1971) Role of molybdenum in nitrate reduction by Chlorella. Plant Physiol 48:294–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma SK, Singh HN (1990) Factors regulating copper uptake in a cyanobacterium. Curr Microbiol 21:33–37

    Article  CAS  Google Scholar 

  • Verma SK, Singh HN (1991) Evidence for energy-dependent copper efflux as a mechanism of Cu2+ resistance in the cyanobacterium Nostoc calcicola. FEMS Microbiol Lett 84:291–294

    Article  CAS  Google Scholar 

  • Vraspir JM, Butler A (2009) Chemistry of marine ligands and siderophores. Annu Rev Mar Sci 1:43–63

    Article  Google Scholar 

  • Wacker WE (1962) Nucleic acids and metals. III Changes in nucleic acid, protein and metal content as a consequence of zinc deficiency in Euglena gracilis. Biochemistry 1:859–865

    Article  CAS  PubMed  Google Scholar 

  • Warburg O, Krippahl G, Buchholz W (1955) Wirkung von Vanadium auf die photosynthese. Z Naturf 10b:422

    CAS  Google Scholar 

  • Werlin R, Priester JH, Mielke RE, Krämer S, Jackson S, Stoimenov PK, Stucky GD, Cherr GN, Orias E, Holden PA (2011) Biomagnification of cadmium selenide quantum dots in a simple experimental microbial food chain. Nat Nanotechnol 6:65–71

    Article  CAS  PubMed  Google Scholar 

  • Whitfield M (2001) Interactions between phytoplankton and trace metals in the ocean. Adv Mar Biol 41:3–128

    Google Scholar 

  • Wilkinson KJ, Buffle J (2004) Critical evaluation of physico-chemical parameters and processes for modeling the biological uptake of trace metals in environmental (aquatic) systems. In: van Leeuwen HP, Köestler W (eds) Physico-chemical kinetics and transport at biointerfaces, vol 9, IUPAC Series in Analytical and Physical Chemistry of Environmental Systems. Wiley, Chichester, pp 447–533

    Google Scholar 

  • Wojciechowski CL, Cardia JP, Kantrowitz ER (2002) Alkaline phosphatase from the hyperthermophilic bacterium T. maritima requires cobalt for activity. Protein Sci 11:903–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfe M (1954) The effect of molybdenum upon the nitrogen metabolism of Anabaena cylindrica. I. A study of the molybdenum requirement for nitrogen fixation and for nitrate and ammonia assimilation. Ann Bot 18:299–308

    CAS  Google Scholar 

  • Worms I, Simon DF, Hassler CS, Wilkinson KJ (2006) Bioavailability of trace metals to aquatic microorganisms: importance of chemical, biological and physical processes on biouptake. Biochimie 88:1721–1731

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Morel FMM (2013) Cadmium in phytoplankton. In: Sigel A, Sigel H, Sigel RKO (eds) Cadmium: from toxicity to essentiality, vol 11, Metal Ions in Life Sciences. Springer, Dordrecht, pp 509–528

    Chapter  Google Scholar 

  • Yee D, Morel FMM (1996) In vivo substitution of zinc by cobalt in carbonic anhydrase of a marine diatom. Limnol Oceanogr 41:573–577

    Article  CAS  Google Scholar 

  • Zerkle AL, House CH, Cox RP, Canfield DE (2006) Metal limitation of cyanobacterial N2 fixation and implications for the Precambrian nitrogen cycle. Geobiology 4:285–297

    Article  CAS  Google Scholar 

  • Zhang S, Jiang Y, Chen C-S, Spurgin J, Schwehr KA, Quigg A, Chin W-C, Santschi PH (2012) Aggregation and dissolution of quantum dots in marine environments: the importance of extracellular polymeric substances. Environ Sci Technol 46:8764–8772

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonietta Quigg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Quigg, A. (2016). Micronutrients. In: Borowitzka, M., Beardall, J., Raven, J. (eds) The Physiology of Microalgae. Developments in Applied Phycology, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-24945-2_10

Download citation

Publish with us

Policies and ethics