Skip to main content

GIS for Dam-Break Flooding. Study Area: Bicaz-Izvorul Muntelui (Romania)

  • Chapter
  • First Online:

Abstract

The objective of this chapter is to present a GIS-based application to visualise and analyse downstream flooding, following a hypothetical Bicaz dam failure on the Bistrita River, Romania. The assumptions of the dam failure scenario are: 50 % breach of the dam surface coupled with a 10,000-year flood. The inundation maps and the dam break flood wave characteristics (depth, velocity, and travel time) are obtained through numerical simulations using a hydraulic model (HEC-RAS) and the best available topographic data. Analysis of flood inundation maps by using GIS tools is crucial for risk assessment and for the emergency preparedness to protect against the loss of life and property damage. Vulnerability maps resulting from a multicriteria analysis are used to explore the potentially affected areas, and a loss analysis (as a simplified quantitative risk analysis) is performed on the physical environment for the city of Bacău, as examples of GIS graphical capabilities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abella EC, Van Westen CJ (2007) Generation of a landslide risk index map for Cuba using spatial multi-criteria evaluation. Landslides 4(4):311–325

    Google Scholar 

  • Adger N, Arnell NW, Tompkins EL (2005) Successful adaptation to climate change across scales. Glob Environ Chang 15:77–86

    Article  Google Scholar 

  • Alcrudo F, Mulet J (2010) Description of the Tous Dam break case study. J Hydraul Res 45(S1):45–47

    Google Scholar 

  • Alexandrescu M (2010) Quantitative management of water resources in Ialomita River watershed. PhD thesis, UTCB, Technical University of Civil Engineering, Bucharest

    Google Scholar 

  • Altinakar MS, McGrath MZ, Ramalingam VP et al (2010) 2D modeling of Big Bay dam failure. In: Dittrich, Koll, Aberle, Geisenhainer (eds) Mississippi: comparison with field data and 1D model results, river flow 2010. © 2010 Bundesanstalt für Wasserbau. ISBN 978-3-939230-00-7

    Google Scholar 

  • Antenucci JC, Brown K, Croswell PL et al (1991) Geographic information systems: a guide to the technology. Van Nostrand Reinhold, New York

    Book  Google Scholar 

  • Armaş I (2008) Social vulnerability and seismic risk perception. Case study: the historic center of the Bucharest Municipality/Romania. Nat Hazards 47:397–410

    Article  Google Scholar 

  • Armaş I (2011) An analytic multicriteria hierarchical approach to assess landslide vulnerability. Case study: Cornu village, Subcarpathian Prahova Valley/Romania. Z Geomorphol 55:209–229

    Article  Google Scholar 

  • Armaş I (2012) Multi-criteria vulnerability analysis to earthquake hazard of Bucharest, Romania. Nat Hazards 63:1129–1156

    Article  Google Scholar 

  • Armaş I, Rădulian M (2014) Spatial multi-criteria risk assessment of earthquakes from Bucharest, Romania. In: Earthquake hazard impact and urban planning. Springer, Dordrecht, pp. 127–150, ISBN 978-94-007-7980-8

    Google Scholar 

  • Barbat AH, Carreño ML, Pujades LG et al (2010) Seismic vulnerability and risk evaluation methods for urban areas. A review with application to a pilot area. Struct Infrastruct Eng 6:17–38

    Article  Google Scholar 

  • Blaikie P, Cannon T, Davis I et al (1994) At risk: natural hazards, people’s vulnerability and disasters. Routledge, London

    Google Scholar 

  • Bornschein A (2014) One dimensional and two-dimensional hydraulic numerical modeling of dam break waves, River Flow 2014 International Conference on Fluvial Hydraulics. Taylor and Francis, pp 1699–1710. ISBN 978-1-138-02674-2

    Google Scholar 

  • Bowles DS (2007) Tolerable risk for dams: how safe is safe enough? In: (USSD) United States Society on Dams, Annual Conference, March 2007. Philadelphia

    Google Scholar 

  • Broich K (1998) Mathematical modelling of dam break erosion caused by overtopping, proceedings of the 2nd CADAM meeting. Universitat der Bunderswehr, Munchen

    Google Scholar 

  • Brooks N (2003) Vulnerability, risk and adaptation: a conceptual framework. Tyndall Centre for Climate Change Research Working Paper 38, 1–16

    Google Scholar 

  • Cannon T (2008) Reducing people’s vulnerability to natural hazards communities and resilience. Research paper/UNU-WIDER, No. 2008. 34, ISBN 978-92-9230-080-7. Available online at http://hdl.handle.net/10419/45089

  • Chendeş V et al (2015) A database design of major past flood events. In: Romania from national and international inventories, air and water components of the environment conference, Cluj. March 2015. pp 25–32. doi:10.17378/AWC2015_04

    Google Scholar 

  • Chevereșan B (2011) Accuracy of DTM in defining flood prone areas. PhD thesis, Technical University of Civil Engineering, Bucharest

    Google Scholar 

  • Coca Al (2016) Flood Risk Assessment for the city of Bacau. Unpublished Master’s thesis (in Romanian), University of Bucharest

    Google Scholar 

  • Costa JE, Schuster RL (1988) The formation and failure of natural dams. Geol Soc Am Bull 100(7):1054–1068

    Article  Google Scholar 

  • Cutter SL, Emrich CT (2006) Moral hazard, social catastrophe: the changing face of vulnerability along the Hurricane Coasts. Ann Am Acad Pol Soc Sci 604:102–112

    Google Scholar 

  • Douglas J (2007) Physical vulnerability modelling in natural hazard risk assessment. Nat Hazards Earth Syst Sci 7:283–288

    Article  Google Scholar 

  • Dwyer A, Zoppou C, Nielsen O et al (2004) Quantifying social vulnerability: a methodology for identifying those at risk to natural hazards. Geoscience Australia Canberra, Canberra

    Google Scholar 

  • E.O. (Emergency Ordinance) no. 244/2000 (2000) on dam safety, official monitor no. 196/04.02.2000, Romania

    Google Scholar 

  • ESRI (2011) GIS best practices, essays on geography and GIS, vol 3. February 2011. https://www.esri.com/library/bestpractices/essays-on-geography-gis-vol3.pdf

  • French JR (2003) Airborne Lidar in support of geomorphologic and hydraulic modelling. Earth Surf Process Landf 28:321–335. doi:10.1002/esp.484

    Article  Google Scholar 

  • Froehlich DC (1987) Embankment-dam breach parameters. In: Proceedings of the ASCE national conference on hydraulic engineering, Williamsburg. pp 570–575

    Google Scholar 

  • Gee D (2009) Comparison of dam breach parameter estimators. World Environ Water Resour Congr 2009:1–10. doi:10.1061/41036(342)339

    Google Scholar 

  • Gee D, Brunner G (2005) Dam break flood routing using HEC-RAS and NWS-FLDWAV. Impact Global Clim Chang. pp 1–9. doi:10.1061/40792(173)401

  • Goodchild MF (1992) Geographical information science. Intl J Geogr Inf Syst 6(1):31–45

    Article  Google Scholar 

  • Haile AT (2005) Integrating hydrodynamic models and high resolution DEM (LiDAR) for flood modeling. PhD thesis, Enchede. http://www.itc.nl/library/papers_2005/msc/wrem/haile.pdf

  • Horrit MS, Bates PD (2002) Evaluation of 1d and 2d numerical models for predicting river flood inundation. J Hydrol 268:87–99

    Article  Google Scholar 

  • Huishi D, Yue Y, Hong S et al (2015) GIS applications and development trends in China. J Landsc Res 7(1):33–34

    Google Scholar 

  • Huissman O (2009) Principles of GIS, ITC, www.itc.nl/library/papers2009/general/PrinciplesGIS.pdf

  • Hydrologic Engineering Center (HEC) (2010) HEC-RAS river analysis system, user’s manual, version 4.1 U.S. Army Corps of Engineers, Davis. http://www.hec.usace.army.mil/software/hec-ras/

  • Hydrologic Engineering Center (HEC) (2011) HEC-GeoRAS, user’s manual version 4.3.93, US Army Corps of Engineers, Davis. http://www.hec.usace.army.mil/software/hec-GeoRAS/

  • IPCC Working Group Report (1995) Impacts, adaptation and mitigation of climate change: scientific technical analyses, chapter 14, water resource management. https://www.ipcc-wg2.gov/publications/SAR/SAR_Chapter%2014.pdf

  • ITC (2012) Integrated land and water information system. http://spatial-analyst.net/ILWIS/help.html

  • Londe P (1987) The Malpasset dam. Proc Int Conf Dam Failures Eng Geol 24:295–329

    Google Scholar 

  • MacDonald TC, Langridge-Monopolis J (1984) Breaching characteristics of dam failures. J Hydraul Eng 110(5):567–586

    Article  Google Scholar 

  • Margo D, Hunter J, Moran B et al (2009) Dam failure analysis and consequence estimation. In: 29th annual USSD conference Nashville, Tennessee, Managing our Water Retention Systems, April 20–24, 2009. pp 1181–1190

    Google Scholar 

  • Mark D (1997) The history of geographic information systems: invention and re-invention of Triangulated Irregular Networks (TINs). Proceedings of the Gis/Lis 1997, Acsm/Asprs Falls Church, VA Oct 1997. Available at http://www.ncgia.buffalo.edu/gishist/GISLIS97.html

  • Marks K, Bates PD (2000) Integration of high-resolution topographic data with floodplain flow models. Hydrol Process 14:2109–2122

    Article  Google Scholar 

  • McClelland DM, Bowles DS (2002) Estimating life loss for dam safety risk assessment – a review and new approach. IWR Report 02-R-3, US Army Corps of Engineers. Institute for Water Resources. Available online at http://www.iwr.usace.army.mil/Portals/70/docs/iwrreports/02-R-3.pdf

  • Morris M, Wallis M, Brown A et al (2012) Reservoir safety risk assessment – a new guide. In: British Dam society annual conference, Leeds

    Google Scholar 

  • Munda G (2004) Social multi-criteria evaluation: methodological foundations and operational consequences. Eur J Oper Res 158:662–677

    Article  Google Scholar 

  • Nistoran DE, Moatar F, Manoliu M, Ionescu C (2007) Hidraulica tehnică. Printech, Bucharest. ISBN 9789737186614

    Google Scholar 

  • O. (Ordinance) no. 1422/192/2012 (2012) for the approval of regulation on the management of emergency situations caused by floods, dangerous meteorological situations accidents at hydrotechnical works and pollution accidents, Official Monitor no. 649 bis/12.09.2012, Romania

    Google Scholar 

  • O’Brien K, Leichenko R, Kelkar U et al (2004) Mapping vulnerability to multiple stressors: climate change and globalization in India. Glob Environ Chang 14(4):303–313

    Article  Google Scholar 

  • Özdemir H, Akbulak C, Özcan H (2010) Reconstruction of Çokal Dam (Çanakkale-Turkey) breach flooding using 1d hydraulic modeling, Balwois 2010, Makedonya, 25–29 May 2010, pp 1–5

    Google Scholar 

  • R. (Regulation) no. 23/01.2006 on operation of dams, reservoirs and water intakes, ministry of environment (Regulamentul – cadru pentru exploatarea barajelor, lacurilor de acumulare si prizelor de alimentare cu apa), Ministerul Mediului, Monitorul Oficial nr. 192/1.03.2006

    Google Scholar 

  • Rădoane M, Rădoane N (2005) Dams, sediment sources and reservoir silting in Romania. Geomorphology 71:112–125

    Article  Google Scholar 

  • Ramesh R, Datta B, Bhallamudi MS et al (2000) Optimal estimation of roughness in open-channel flows. J Hydraul Eng 126(4):299–303

    Article  Google Scholar 

  • Regan PJ (2010) Dams and civil structures: an examination of dam failures vs. age of dams. Hydrol Rev 29(4). http://www.hydroworld.com/articles/hr/print/volume-29/issue-4.html

  • Sharifi MA, van Herwijnen M, van den Toorn W (2004) Spatial decision support systems: theory and practice. Distance education course, lecture notes. Enschede

    Google Scholar 

  • Singh VP, Panagiotis DS (1988) Analysis of gradual dam failure. J Hydraul Eng 114(1):21–42

    Article  Google Scholar 

  • Stanescu VA, Drobot RA (2002) Non-structural methods of flood control, *H*G*A. Bucharest, ISBN 973-8176-16-6

    Google Scholar 

  • Stematiu D, Ionescu S, Abdulamit A (2010) Siguranta barajelor si managementul riscului (Romanian). CONSPRESS, Bucharest

    Google Scholar 

  • Stoenescu CL (2009) Contributii la evaluarea pagubelor din inundatii provocate de accidente la baraje (Romanian). PhD thesis, UTCB, Bucharest

    Google Scholar 

  • Tapsell S, Mccarthy S, Faulkner H et al (2010) Social vulnerability and natural hazards. CapHaz-Net WP4 Report, London, Flood Hazard Research Centre – FHRC, Middlesex University

    Google Scholar 

  • US Army Corps of Engineers (1997) Engineering manual 1110-2-1420, hydrologic engineering requirements for reservoirs, Chap. 16, dam break analysis. pp 16–1–16–5

    Google Scholar 

  • US Department of the Interior, Bureau of Reclamation (2014) RCEM – Reclamation Consequence Estimating Methodology, dam failure and flood event case history compilation. Feb 2014, Draft Report. http://www.usbr.gov/ssle/damsafety/documents/RCEM-CaseHistories20140731.pdf

  • van Westen, CJ, Kumar Piya B, Guragain J (2005) Geo – information for urban risk assessment in developing countries: the SLARIM project. In: van Oosterom PJM, Zlatanova S, Elfriede M (eds) Geo-information for disaster management Gi4DM: proceedings of the 1st international symposium on geo-information for disaster management, Delft, The Netherlands, 21–23 March 2005, Berlin etc. Springer, pp 379–392, ISBN: 978-3-540-24988-7

    Google Scholar 

  • Wahl TL (2004) Uncertainty of predictions of embankment dam breach parameters. J Hydraul Eng 130(5):389–397

    Article  Google Scholar 

  • Xiong Y (2011) A dam break analysis using HEC-RAS. J Water Resour Prot 3:370–379

    Article  Google Scholar 

  • Yochum SE, Goertz LA, Jones PE (2008) Case study of the big bay dam failure: accuracy and comparison of breach predictions. J Hydraul Eng 134(9):1285–1293, ISSN 07339429/2008/9-1285–1293

    Article  Google Scholar 

  • Zagonjolli M (2007) Dam break modelling, risk assessment and for flood mitigation. PhD thesis, TU Delft, Netherlands

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Elena Gogoaşe Nistoran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gogoaşe Nistoran, D.E., Gheorghe Popovici, D.A., Savin, B.A.C., Armaş, I. (2016). GIS for Dam-Break Flooding. Study Area: Bicaz-Izvorul Muntelui (Romania). In: Boştenaru Dan, M., Crăciun, C. (eds) Space and Time Visualisation. Springer, Cham. https://doi.org/10.1007/978-3-319-24942-1_15

Download citation

Publish with us

Policies and ethics