Skip to main content

The Role of Cancer Stem Cells in Recurrent and Drug-Resistant Lung Cancer

  • Chapter
  • First Online:
Lung Cancer and Personalized Medicine: Novel Therapies and Clinical Management

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 890))

Abstract

Lung cancer is the leading cause of cancer-related deaths worldwide with a 5-year overall survival rate of less than 20 %. Considering the treatments currently available, this statistics is shocking. A possible explanation for the disconnect between sophisticated treatments and the survival rate can be related to the post-treatment enrichment of Cancer Stem Cells (CSCs), which is one of a sub-set of drug resistant tumor cells with abilities of self-renewal, cancer initiation, and further maintenance of tumors. Lung CSCs have been associated with resistance to radiation and chemotherapeutic treatments. CSCs have also been implicated in tumor recurrence because CSCs are not typically killed after conventional therapy. Investigation of CSCs in determining their role in tumor recurrence and drug-resistance relied heavily on the use of specific markers present in CSCs, including CD133, ALDH, ABCG2, and Nanog. Yet another cell type that is also associated with increased resistance to treatment is epithelial-to-mesenchymal transition (EMT) phenotypic cells. Through the processes of EMT, epithelial cells lose their epithelial phenotype and gain mesenchymal properties, rendering EMT phenotypic cells acquire drug-resistance. In this chapter, we will further discuss the role of microRNAs (miRNAs) especially because miRNA-based therapies are becoming attractive target with respect to therapeutic resistance and CSCs. Finally, the potential role of the natural agents and synthetic derivatives of natural compounds with anti-cancer activity, e.g. curcumin, CDF, and BR-DIM is highlighted in overcoming therapeutic resistance, suggesting that the above mentioned agents could be important for better treatment of lung cancer in combination therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pathak AK, Bhutani M, Mohan A, Guleria R, Bal S, Kochupillai V (2004) Non small cell lung cancer (NSCLC): current status and future prospects. Indian J Chest Dis Allied Sci 46:191–203

    PubMed  CAS  Google Scholar 

  2. Singh S, Chellappan S (2014) Lung cancer stem cells: molecular features and therapeutic targets. Mol Aspects Med 39:50–60

    Article  PubMed  CAS  Google Scholar 

  3. Kanwar SS, Yu Y, Nautiyal J, Patel BB, Padhye S, Sarkar FH et al (2011) Difluorinated-curcumin (CDF): a novel curcumin analog is a potent inhibitor of colon cancer stem-like cells. Pharm Res 28:827–838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Hu Y, Fu L (2012) Targeting cancer stem cells: a new therapy to cure cancer patients. Am J Cancer Res 2:340–356

    PubMed  PubMed Central  Google Scholar 

  5. Chen YC, Hsu HS, Chen YW, Tsai TH, How CK, Wang CY et al (2008) Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells. PLoS One 3, e2637

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Wu Y, Wu PY (2009) CD133 as a marker for cancer stem cells: progresses and concerns. Stem Cells Dev 18:1127–1134

    Article  PubMed  CAS  Google Scholar 

  7. Mizugaki H, Sakakibara-Konishi J, Kikuchi J, Moriya J, Hatanaka KC, Kikuchi E et al (2014) CD133 expression: a potential prognostic marker for non-small cell lung cancers. Int J Clin Oncol 19:254–259

    Article  PubMed  CAS  Google Scholar 

  8. Shien K, Toyooka S, Ichimura K, Soh J, Furukawa M, Maki Y et al (2012) Prognostic impact of cancer stem cell-related markers in non-small cell lung cancer patients treated with induction chemoradiotherapy. Lung Cancer 77:162–167

    Article  PubMed  Google Scholar 

  9. Herpel E, Jensen K, Muley T, Warth A, Schnabel PA, Meister M et al (2011) The cancer stem cell antigens CD133, BCRP1/ABCG2 and CD117/c-KIT are not associated with prognosis in resected early-stage non-small cell lung cancer. Anticancer Res 31:4491–4500

    PubMed  Google Scholar 

  10. Russo JE, Hilton J (1988) Characterization of cytosolic aldehyde dehydrogenase from cyclophosphamide resistant L1210 cells. Cancer Res 48:2963–2968

    PubMed  CAS  Google Scholar 

  11. Sullivan JP, Spinola M, Dodge M, Raso MG, Behrens C, Gao B et al (2010) Aldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on notch signaling. Cancer Res 70:9937–9948

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Huang CP, Tsai MF, Chang TH, Tang WC, Chen SY, Lai HH et al (2013) ALDH-positive lung cancer stem cells confer resistance to epidermal growth factor receptor tyrosine kinase inhibitors. Cancer Lett 328:144–151

    Article  PubMed  CAS  Google Scholar 

  13. Alamgeer M, Ganju V, Szczepny A, Russell PA, Prodanovic Z, Kumar B et al (2013) The prognostic significance of aldehyde dehydrogenase 1A1 (ALDH1A1) and CD133 expression in early stage non-small cell lung cancer. Thorax 68:1095–1104

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bertolini G, Roz L, Perego P, Tortoreto M, Fontanella E, Gatti L et al (2009) Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proc Natl Acad Sci U S A 106:16281–16286

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sung JM, Cho HJ, Yi H, Lee CH, Kim HS, Kim DK et al (2008) Characterization of a stem cell population in lung cancer A549 cells. Biochem Biophys Res Commun 371:163–167

    Article  PubMed  CAS  Google Scholar 

  16. Dylla SJ, Beviglia L, Park IK, Chartier C, Raval J, Ngan L et al (2008) Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS One 3, e2428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Li L, Yu H, Wang X, Zeng J, Li D, Lu J et al (2013) Expression of seven stem-cell-associated markers in human airway biopsy specimens obtained via fiberoptic bronchoscopy. J Exp Clin Cancer Res 32:28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Yi H, Cho HJ, Cho SM, Jo K, Park JA, Kim NH et al (2012) Blockade of interleukin-6 receptor suppresses the proliferation of H460 lung cancer stem cells. Int J Oncol 41:310–316

    PubMed  CAS  Google Scholar 

  19. Du Y, Ma C, Wang Z, Liu Z, Liu H, Wang T (2013) Nanog, a novel prognostic marker for lung cancer. Surg Oncol 22:224–229

    Article  PubMed  Google Scholar 

  20. Rappa G, Fodstad O, Lorico A (2008) The stem cell-associated antigen CD133 (Prominin-1) is a molecular therapeutic target for metastatic melanoma. Stem Cells 26:3008–3017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Smith LM, Nesterova A, Ryan MC, Duniho S, Jonas M, Anderson M et al (2008) CD133/prominin-1 is a potential therapeutic target for antibody-drug conjugates in hepatocellular and gastric cancers. Br J Cancer 99:100–109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kim RJ, Park JR, Roh KJ, Choi AR, Kim SR, Kim PH et al (2013) High aldehyde dehydrogenase activity enhances stem cell features in breast cancer cells by activating hypoxia-inducible factor-2alpha. Cancer Lett 333:18–31

    Article  PubMed  CAS  Google Scholar 

  23. Stacy AE, Jansson PJ, Richardson DR (2013) Molecular pharmacology of ABCG2 and its role in chemoresistance. Mol Pharmacol 84:655–669

    Article  PubMed  CAS  Google Scholar 

  24. Mimeault M, Hauke R, Batra SK (2008) Recent advances on the molecular mechanisms involved in the drug resistance of cancer cells and novel targeting therapies. Clin Pharmacol Ther 83:673–691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Siu MK, Wong ES, Chan HY, Ngan HY, Chan KY, Cheung AN (2008) Overexpression of NANOG in gestational trophoblastic diseases: effect on apoptosis, cell invasion, and clinical outcome. Am J Pathol 173:1165–1172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Xiao D, He J (2010) Epithelial mesenchymal transition and lung cancer. J Thorac Dis 2:154–159

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Trumpp A, Wiestler OD (2008) Mechanisms of disease: cancer stem cells–targeting the evil twin. Nat Clin Pract Oncol 5:337–347

    PubMed  CAS  Google Scholar 

  28. Liu YP, Yang CJ, Huang MS, Yeh CT, Wu AT, Lee YC et al (2013) Cisplatin selects for multidrug-resistant CD133+ cells in lung adenocarcinoma by activating Notch signaling. Cancer Res 73:406–416

    Article  PubMed  CAS  Google Scholar 

  29. Witta SE, Gemmill RM, Hirsch FR, Coldren CD, Hedman K, Ravdel L et al (2006) Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines. Cancer Res 66:944–950

    Article  PubMed  CAS  Google Scholar 

  30. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Rhim AD, Mirek ET, Aiello NM, Maitra A, Bailey JM, McAllister F et al (2012) EMT and dissemination precede pancreatic tumor formation. Cell 148:349–361

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Zhang Y, Wei J, Wang H, Xue X, An Y, Tang D et al (2012) Epithelial mesenchymal transition correlates with CD24+ CD44+ and CD133+ cells in pancreatic cancer. Oncol Rep 27:1599–1605

    PubMed  CAS  Google Scholar 

  33. Giarnieri E, De VC, Noto A, Roscilli G, Salerno G, Mariotta S et al (2013) EMT markers in lung adenocarcinoma pleural effusion spheroid cells. J Cell Physiol 228:1720–1726

    Article  PubMed  CAS  Google Scholar 

  34. Singh A, Settleman J (2010) EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29:4741–4751

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA (2008) Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res 68:3645–3654

    Article  PubMed  CAS  Google Scholar 

  36. Zhang WC, Shyh-Chang N, Yang H, Rai A, Umashankar S, Ma S et al (2012) Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell 148:259–272

    Article  PubMed  CAS  Google Scholar 

  37. Uramoto H, Iwata T, Onitsuka T, Shimokawa H, Hanagiri T, Oyama T (2010) Epithelial-mesenchymal transition in EGFR-TKI acquired resistant lung adenocarcinoma. Anticancer Res 30:2513–2517

    PubMed  CAS  Google Scholar 

  38. Azzoli CG, Baker S Jr, Temin S, Pao W, Aliff T, Brahmer J et al (2010) American Society of Clinical Oncology Clinical Practice Guideline update on chemotherapy for stage IV non-small-cell lung cancer. Zhongguo Fei Ai Za Zhi 13:171–189

    PubMed  Google Scholar 

  39. Kusumbe AP, Bapat SA (2009) Cancer stem cells and aneuploid populations within developing tumors are the major determinants of tumor dormancy. Cancer Res 69:9245–9253

    Article  PubMed  CAS  Google Scholar 

  40. Kim EY, Lee SS, Shin JH, Kim SH, Shin DH, Baek SY (2014) Anticancer effect of arsenic trioxide on cholangiocarcinoma: in vitro experiments and in vivo xenograft mouse model. Clin Exp Med 14:215–224

    Article  PubMed  CAS  Google Scholar 

  41. Patel P, Chen EI (2012) Cancer stem cells, tumor dormancy, and metastasis. Front Endocrinol (Lausanne) 3:125

    Google Scholar 

  42. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760

    Article  PubMed  CAS  Google Scholar 

  43. Mimeault M, Batra SK (2011) Potential applications of curcumin and its novel synthetic analogs and nanotechnology-based formulations in cancer prevention and therapy. Chin Med 6:31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Liu C, Tang DG (2011) MicroRNA regulation of cancer stem cells. Cancer Res 71:5950–5954

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Yu Y, Sarkar FH, Majumdar AP (2013) Down-regulation of miR-21 induces differentiation of chemoresistant colon cancer cells and enhances susceptibility to therapeutic regimens. Transl Oncol 6:180–186

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sarkar FH, Li Y, Wang Z, Kong D, Ali S (2010) Implication of microRNAs in drug resistance for designing novel cancer therapy. Drug Resist Updat 13:57–66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Incoronato M, Garofalo M, Urso L, Romano G, Quintavalle C, Zanca C et al (2010) miR-212 increases tumor necrosis factor-related apoptosis-inducing ligand sensitivity in non-small cell lung cancer by targeting the antiapoptotic protein PED. Cancer Res 70:3638–3646

    Article  PubMed  CAS  Google Scholar 

  48. Turrini E, Haenisch S, Laechelt S, Diewock T, Bruhn O, Cascorbi I (2012) MicroRNA profiling in K-562 cells under imatinib treatment: influence of miR-212 and miR-328 on ABCG2 expression. Pharmacogenet Genomics 22:198–205

    Article  PubMed  CAS  Google Scholar 

  49. Rui W, Bing F, Hai-Zhu S, Wei D, Long-Bang C (2010) Identification of microRNA profiles in docetaxel-resistant human non-small cell lung carcinoma cells (SPC-A1). J Cell Mol Med 14:206–214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Ahmad A, Aboukameel A, Kong D, Wang Z, Sethi S, Chen W et al (2011) Phosphoglucose isomerase/autocrine motility factor mediates epithelial-mesenchymal transition regulated by miR-200 in breast cancer cells. Cancer Res 71:3400–3409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Ahmad A, Maitah MY, Ginnebaugh KR, Li Y, Bao B, Gadgeel SM et al (2013) Inhibition of Hedgehog signaling sensitizes NSCLC cells to standard therapies through modulation of EMT-regulating miRNAs. J Hematol Oncol 6:77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H et al (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756

    Article  PubMed  CAS  Google Scholar 

  53. Takezawa K, Okamoto I, Tanizaki J, Kuwata K, Yamaguchi H, Fukuoka M et al (2010) Enhanced anticancer effect of the combination of BIBW2992 and thymidylate synthase-targeted agents in non-small cell lung cancer with the T790M mutation of epidermal growth factor receptor. Mol Cancer Ther 9:1647–1656

    Article  PubMed  CAS  Google Scholar 

  54. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO et al (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316:1039–1043

    Article  PubMed  CAS  Google Scholar 

  55. Garofalo M, Croce CM (2013) MicroRNAs as therapeutic targets in chemoresistance. Drug Resist Updat 16:47–59

    Article  PubMed  CAS  Google Scholar 

  56. Garofalo M, Romano G, Di LG, Nuovo G, Jeon YJ, Ngankeu A et al (2012) EGFR and MET receptor tyrosine kinase-altered microRNA expression induces tumorigenesis and gefitinib resistance in lung cancers. Nat Med 18:74–82

    CAS  Google Scholar 

  57. Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE et al (2007) p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17:1298–1307

    Article  PubMed  CAS  Google Scholar 

  58. Basak SK, Veena MS, Oh S, Lai C, Vangala S, Elashoff D et al (2013) The CD44(high) tumorigenic subsets in lung cancer biospecimens are enriched for low miR-34a expression. PLoS One 8, e73195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Wiggins JF, Ruffino L, Kelnar K, Omotola M, Patrawala L, Brown D et al (2010) Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res 70:5923–5930

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Bao B, Ali S, Kong D, Sarkar SH, Wang Z, Banerjee S et al (2011) Anti-tumor activity of a novel compound-CDF is mediated by regulating miR-21, miR-200, and PTEN in pancreatic cancer. PLoS One 6, e17850

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Jiang M, Zhang P, Hu G, Xiao Z, Xu F, Zhong T et al (2013) Relative expressions of miR-205-5p, miR-205-3p, and miR-21 in tissues and serum of non-small cell lung cancer patients. Mol Cell Biochem 383:67–75

    Article  PubMed  CAS  Google Scholar 

  62. Iliopoulos D, Lindahl-Allen M, Polytarchou C, Hirsch HA, Tsichlis PN, Struhl K (2010) Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol Cell 39:761–772

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Dandawate P, Padhye S, Ahmad A, Sarkar FH (2013) Novel strategies targeting cancer stem cells through phytochemicals and their analogs. Drug Deliv Transl Res 3:165–182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Soubani O, Ali AS, Logna F, Ali S, Philip PA, Sarkar FH (2012) Re-expression of miR-200 by novel approaches regulates the expression of PTEN and MT1-MMP in pancreatic cancer. Carcinogenesis 33:1563–1571

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Ichite N, Chougule MB, Jackson T, Fulzele SV, Safe S, Singh M (2009) Enhancement of docetaxel anticancer activity by a novel diindolylmethane compound in human non-small cell lung cancer. Clin Cancer Res 15:543–552

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Rahimi M, Huang KL, Tang CK (2010) 3,3′-Diindolylmethane (DIM) inhibits the growth and invasion of drug-resistant human cancer cells expressing EGFR mutants. Cancer Lett 295:59–68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Xue L, Firestone GL, Bjeldanes LF (2005) DIM stimulates IFNgamma gene expression in human breast cancer cells via the specific activation of JNK and p38 pathways. Oncogene 24:2343–2353

    Article  PubMed  CAS  Google Scholar 

  68. Hsu EL, Chen N, Westbrook A, Wang F, Zhang R, Taylor RT et al (2008) CXCR4 and CXCL12 down-regulation: a novel mechanism for the chemoprotection of 3,3′-diindolylmethane for breast and ovarian cancers. Cancer Lett 265:113–123

    Article  PubMed  CAS  Google Scholar 

  69. Jung MJ, Rho JK, Kim YM, Jung JE, Jin YB, Ko YG et al (2013) Upregulation of CXCR4 is functionally crucial for maintenance of stemness in drug-resistant non-small cell lung cancer cells. Oncogene 32:209–221

    Article  PubMed  CAS  Google Scholar 

  70. Ye MX, Li Y, Yin H, Zhang J (2012) Curcumin: updated molecular mechanisms and intervention targets in human lung cancer. Int J Mol Sci 13:3959–3978

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Zhang H, Yu T, Wen L, Wang H, Fei D, Jin C (2013) Curcumin enhances the effectiveness of cisplatin by suppressing CD133 cancer stem cells in laryngeal carcinoma treatment. Exp Ther Med 6:1317–1321

    PubMed  PubMed Central  CAS  Google Scholar 

  72. Mimeault M, Batra SK (2014) Altered gene products involved in the malignant reprogramming of cancer stem/progenitor cells and multitargeted therapies. Mol Aspects Med 39:3–32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Zhang J, Zhang T, Ti X, Shi J, Wu C, Ren X et al (2010) Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway. Biochem Biophys Res Commun 399:1–6

    Article  PubMed  CAS  Google Scholar 

  74. Zhang J, Du Y, Wu C, Ren X, Ti X, Shi J et al (2010) Curcumin promotes apoptosis in human lung adenocarcinoma cells through miR-186* signaling pathway. Oncol Rep 24:1217–1223

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazlul H. Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Suresh, R., Ali, S., Ahmad, A., Philip, P.A., Sarkar, F.H. (2016). The Role of Cancer Stem Cells in Recurrent and Drug-Resistant Lung Cancer. In: Ahmad, A., Gadgeel, S. (eds) Lung Cancer and Personalized Medicine: Novel Therapies and Clinical Management. Advances in Experimental Medicine and Biology, vol 890. Springer, Cham. https://doi.org/10.1007/978-3-319-24932-2_4

Download citation

Publish with us

Policies and ethics