Skip to main content

Applications

  • Chapter
  • First Online:
Tempered Stable Distributions

Part of the book series: SpringerBriefs in Mathematics ((BRIEFSMATH))

  • 895 Accesses

Abstract

In this chapter we discuss two applications of tempered stable distributions. The first is to option pricing and the second is to mobility models. We also discuss the mechanism by which tempered stable distributions appear in applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This means that for any \(A \in \mathcal{F}\) we have P(A) = 0 if and only if Q(A) = 0.

  2. 2.

    Although the Radon-Nikodym derivative process only defines measures on \((\varOmega,\mathcal{F}_{t})\) for t ≥ 0, it, in fact, uniquely determines a probability measure on \((\varOmega,\mathcal{F})\). See the discussion near Definition 33.4 in [69].

  3. 3.

    This follows from properties of Poisson random measures and the fact that the jump measure of a Lévy process is a Poisson random measure, see, e.g., Theorem 19.2 in [69] or Chapter 3 in [21].

  4. 4.

    A version of this result also appears in [33]. It should be noted that we are using a slightly different parametrization than the one used in [33] and [34].

  5. 5.

    It should be noted that [34] reported a slightly different natural scale. This is due to that fact that a different parametrization was used there.

References

  1. L. Cao and M. Grabchak (2014). Smoothly truncated Lévy walks: Toward a realistic mobility model. IPCCC ’14: Proceedings of the 33rd International Performance Computing and Communications Conference.

    Google Scholar 

  2. P. Carr, H. Geman, D. B. Madan, and M. Yor (2002). The fine structure of asset returns: An empirical investigation. Journal of Business, 75(2): 305–332.

    Article  Google Scholar 

  3. A. Chakrabarty and M. M. Meerschaert (2011). Tempered stable laws as random walk limits. Statistics & Probability Letters, 81(8):989–997.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Cont and P. Tankov (2004). Financial Modeling With Jump Processes. Chapman & Hall, Boca Raton.

    MATH  Google Scholar 

  5. W. Feller (1971). An Introduction to Probability Theory and Its Applications Volume II, 2nd Ed. John Wiley & Sons, Inc., New York.

    MATH  Google Scholar 

  6. M. C. González, C. A. Hidalgo, and A. L. Barabási (2008). Understanding individual human mobility patterns. Nature, 453(7169):779–782.

    Article  Google Scholar 

  7. M. Grabchak (2014). Does value-at-risk encourage diversification when losses follow tempered stable or more general Lévy processes? Annals of Finance, 10(4):553–568.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Grabchak and S. Molchanov (2013). Limit theorems and phase transitions for two models of summation of iid random variables depending on parameters. Doklady Mathematics, 88(1):431–434.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Grabchak and S. Molchanov (2015). Limit theorems and phase transitions for two models of summation of i.i.d. random variables with a parameter. Theory of Probability and Its Applications, 59(2):222–243.

    Article  MATH  Google Scholar 

  10. M. Grabchak and G. Samorodnitsky (2010). Do financial returns have finite or infinite variance? A paradox and an explanation. Quantitative Finance, 10(8):883–893.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Kawai and S. Petrovskii (2012). Multi-scale properties of random walk models of animal movement: Lessons from statistical inference. Proceedings of the Royal Society A, 468(2141): 1428–1451.

    Article  MathSciNet  Google Scholar 

  12. Y. S. Kim, S. T. Rachev, M. L. Bianchi, and F. J. Fabozzi (2009). A new tempered stable distribution and its application to finance. In G. Bol, S. T. Rachev, and R. Würth (eds.), Risk Assessment: Decisions in Banking and Finance. Physica-Verlag, Springer, Heidelberg pg. 77–108.

    Google Scholar 

  13. Y. S. Kim, S. T. Rachev, M. L. Bianchi, and F. J. Fabozzi (2010). Computing VaR and AVaR in infinitely divisible distributions. Probability and Mathematical Statistics, 30(2), 223–245.

    MathSciNet  MATH  Google Scholar 

  14. U. Küchler and S. Tappe (2014). Exponential stock models driven by tempered stable processes. Journal of Econometrics, 181(1):53–63.

    Article  MathSciNet  MATH  Google Scholar 

  15. S. T. Rachev, Y. S. Kim, M. L. Bianchi, and F. J. Fabozzi (2011). Financial Models with Levy Processes and Volatility Clustering. John Wiley & Sons Ltd.

    Book  MATH  Google Scholar 

  16. D. A. Raichlen, B. M. Wood, A. D. Gordon, A. Z. P. Mabulla, F. W. Marlowe, and H. Pontzer (2014). Evidence of Lévy walk foraging patterns in human hunter–gatherers. Proceedings of the National Academy of Sciences of the United States of America, 111(2):728–733.

    Article  Google Scholar 

  17. I. Rhee, M. Shin, S. Hong, K. Lee, S. J. Kim, and S. Chong (2011). On the levy-walk nature of human mobility: Do humans walk like monkeys? IEEE/ACM Transaction on Networking, 19(3):630–643.

    Article  Google Scholar 

  18. K. Sato (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Michael Grabchak

About this chapter

Cite this chapter

Grabchak, M. (2016). Applications. In: Tempered Stable Distributions. SpringerBriefs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-24927-8_7

Download citation

Publish with us

Policies and ethics