Skip to main content

Introduction

  • Chapter
  • First Online:
Tempered Stable Distributions

Part of the book series: SpringerBriefs in Mathematics ((BRIEFSMATH))

  • 895 Accesses

Abstract

This chapter contains a brief discussion of the motivation for introducing the class of tempered stable distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Lévy flights are random walks, where the step sizes are independent and identically distributed draws from an infinite variance α-stable distribution, see [52]. The term “truncated Lévy flight” was also originally used to refer to a random walk, but has now come to refer to the underlying distribution.

  2. 2.

    This is because infinitely divisible distributions cannot have a bounded support, see Theorem 24.3 in [69].

  3. 3.

    Background on infinitely divisible distributions and Lévy measures is given in Section 2.2

References

  1. O. O. Aalen (1992). Modelling heterogeneity in survival analysis by the compound Poisson distribution. The Annals of Applied Probability, 2(4): 951–972.

    Article  MathSciNet  MATH  Google Scholar 

  2. T. Aoyama, M. Maejima, and J. Rosiński (2008). A subclass of type G selfdecomposable distributions on \(\mathbb{R}^{d}\). Journal of Theoretical Probability, 21(1):14–34.

    Article  MathSciNet  MATH  Google Scholar 

  3. O. E. Barndorff-Nielsen, M. Maejima, and K. Sato (2006). Some classes of multivariate infinitely divisible distributions admitting stochastic integral representations. Bernoulli, 12(1):1–33.

    MathSciNet  MATH  Google Scholar 

  4. M. L. Bianchi, S. T. Rachev, Y. S. Kim, and F. J. Fabozzi (2011). Tempered infinitely divisible distributions and processes. Theory of Probability and Its Applications, 55(1):2–26.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Bruno, L. Sorriso-Valvo, V. Carbone, and B. Bavassano (2004). A possible truncated-Lévy-flight statistics recovered from interplanetary solar-wind velocity and magnetic-field fluctuations. Europhysics Letters, 66(1): 146–152.

    Article  Google Scholar 

  6. S. I. Boyarchenko and S. Levendorskiĭ (2000). Option pricing for truncated Lévy processes. International Journal of Theoretical and Applied Finance, 3(3): 549–552.

    Article  MATH  Google Scholar 

  7. L. Cao and M. Grabchak (2014). Smoothly truncated Lévy walks: Toward a realistic mobility model. IPCCC ’14: Proceedings of the 33rd International Performance Computing and Communications Conference.

    Google Scholar 

  8. P. Carr, H. Geman, D. B. Madan, and M. Yor (2002). The fine structure of asset returns: An empirical investigation. Journal of Business, 75(2): 305–332.

    Article  Google Scholar 

  9. A. Chakrabarty and M. M. Meerschaert (2011). Tempered stable laws as random walk limits. Statistics & Probability Letters, 81(8):989–997.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Cont and P. Tankov (2004). Financial Modeling With Jump Processes. Chapman & Hall, Boca Raton.

    MATH  Google Scholar 

  11. M. C. González, C. A. Hidalgo, and A. L. Barabási (2008). Understanding individual human mobility patterns. Nature, 453(7169):779–782.

    Article  Google Scholar 

  12. M. Grabchak (2012). On a new class of tempered stable distributions: Moments and regular variation. Journal of Applied Probability, 49(4):1015–1035.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Grabchak and S. Molchanov (2015). Limit theorems and phase transitions for two models of summation of i.i.d. random variables with a parameter. Theory of Probability and Its Applications, 59(2):222–243.

    Article  MATH  Google Scholar 

  14. M. Grabchak and G. Samorodnitsky (2010). Do financial returns have finite or infinite variance? A paradox and an explanation. Quantitative Finance, 10(8):883–893.

    Article  MathSciNet  MATH  Google Scholar 

  15. P. S. Griffin, R. A. Maller, and D. Roberts (2013). Finite time ruin probabilities for tempered stable insurance risk processes. Insurance: Mathematics and Economics, 53(2): 478–489.

    MathSciNet  MATH  Google Scholar 

  16. D. Hainaut and P. Devolders (2008). Mortality modelling with Lévy processes. Insurance: Mathematics and Economics, 42(1):409–418.

    MathSciNet  MATH  Google Scholar 

  17. P. Hougaard (1986). Survival models for heterogeneous populations derived from stable distributions. Biometrika, 73(2): 387–396.

    Article  MathSciNet  MATH  Google Scholar 

  18. R. Kawai and S. Petrovskii (2012). Multi-scale properties of random walk models of animal movement: Lessons from statistical inference. Proceedings of the Royal Society A, 468(2141): 1428–1451.

    Article  MathSciNet  Google Scholar 

  19. Y. S. Kim, S. T. Rachev, M. L. Bianchi, and F. J. Fabozzi (2009). A new tempered stable distribution and its application to finance. In G. Bol, S. T. Rachev, and R. Würth (eds.), Risk Assessment: Decisions in Banking and Finance. Physica-Verlag, Springer, Heidelberg pg. 77–108.

    Google Scholar 

  20. I. Koponen (1995). Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. Physical Review E, 52(1):1197–1199.

    Article  Google Scholar 

  21. U. Küchler and S. Tappe (2014). Exponential stock models driven by tempered stable processes. Journal of Econometrics, 181(1):53–63.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Maejima and G. Nakahara (2009). A note on new classes of infinitely divisible distributions on \(\mathbb{R}^{d}\). Electronic Communications in Probability, 14:358–371.

    Article  MathSciNet  MATH  Google Scholar 

  23. R. N. Mantegna and H. E. Stanley (1994). Stochastic process with ultraslow convergence to a Gaussian: The truncated Lévy flight. Physical Review Letters, 73(22):2946–2949.

    Article  MathSciNet  MATH  Google Scholar 

  24. M. M. Meerschaert, Y. Zhang, and B. Baeumer (2008). Tempered anomalous diffusion in heterogeneous systems. Geophysical Research Letters, 35.

    Google Scholar 

  25. E. A. Novikov (1994). Infinitely divisible distributions in turbulence. Physical Review E, 50(5):R3303–R3305.

    Article  Google Scholar 

  26. K. J. Palmer, M. S. Ridout, and B. J. T. Morgan (2008). Modelling Cell Generation times by using the tempered stable distribution. Journal of the Royal Statistical Society Series C: Applied Statistics, 57(4): 379–397.

    Article  MathSciNet  MATH  Google Scholar 

  27. S. T. Rachev, Y. S. Kim, M. L. Bianchi, and F. J. Fabozzi (2011). Financial Models with Levy Processes and Volatility Clustering. John Wiley & Sons Ltd.

    Book  MATH  Google Scholar 

  28. D. A. Raichlen, B. M. Wood, A. D. Gordon, A. Z. P. Mabulla, F. W. Marlowe, and H. Pontzer (2014). Evidence of Lévy walk foraging patterns in human hunter–gatherers. Proceedings of the National Academy of Sciences of the United States of America, 111(2):728–733.

    Article  Google Scholar 

  29. I. Rhee, M. Shin, S. Hong, K. Lee, S. J. Kim, and S. Chong (2011). On the levy-walk nature of human mobility: Do humans walk like monkeys? IEEE/ACM Transaction on Networking, 19(3):630–643.

    Article  Google Scholar 

  30. J. Rosiński (2007). Tempering stable processes. Stochastic Processes and their Applications, 117(6):677–707.

    Article  MathSciNet  MATH  Google Scholar 

  31. K. Sato (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  32. V. Seshadri (1993). The Inverse Gaussian Distribution: A Case Study in Exponential Families. Oxford University Press, Oxford.

    Google Scholar 

  33. G. Terdik and T. Gyires (2009a). Lévy flights and fractal modeling of internet traffic. IEEE/ACM Transactions on Networking, 17(1):120–129.

    Article  Google Scholar 

  34. G. Terdik and T. Gyires (2009b). Does the internet still demonstrate fractal nature? In ICN ’09: Eighth International Conference on Networks, pg. 30–34.

    Google Scholar 

  35. M. C. K. Tweedie (1984). An index which distinguishes between some important exponential families. In J. K. Ghosh and J. Roy (eds.), Statistics: Applications and New Directions. Proceedings of the Indian Statistical Institute Golden Jubilee International Conference. Indian Statistical Institute, Calcutta, pg. 579–604.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Michael Grabchak

About this chapter

Cite this chapter

Grabchak, M. (2016). Introduction. In: Tempered Stable Distributions. SpringerBriefs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-24927-8_1

Download citation

Publish with us

Policies and ethics