Skip to main content

Appendix: Dating Methods Applied to Azokh Cave Sites

  • Chapter
  • First Online:
Azokh Cave and the Transcaucasian Corridor

Abstract

Dating is basic for archaeological and paleontological investigations and results of different dating methods used in Azokh caves are described in this chapter. Fossils from Azokh were not dated by any method previously. Lithic technology and taxonomy suggested a middle Pleistocene age for Unit V (from where Acheulian industries and a human mandible fragment were recovered) while Units III and II yielded Mousterian industries indicating middle Paleolithic ages. Dates from Azokh by Electron Spin Resonance (ESR) previously published elsewhere were given before final calculations and they slightly differ from those given in this Appendix, which are the definitive dating results.

Резюме

Датировка является важнейшим этапом археологических и палеонтологических исследований, и в данном разделе описаны результаты различных техник датировки, использованных для Азохской пещеры. Находки из Азоха ранее не были датированы каким-либо методом. Технология получения каменных орудий и таксономия фауны указывают на среднеплейстоценовый возраст подразделения V (где были найдены ашельские орудия и фрагмент нижней челюсти человека), в то время как подразделения III и II с мустерианской индустрией имеют среднепалеолитический возраст. Датировки Азоха методом электронного спинового резонанса (ЭСР), ранее опубликованные в литературе, были получены до проведения завершающих вычислений и потому они немного отличаются от представленных в этом приложении, являющихся окончательными оценками. Результаты ЭСР и метода рацемизации указывают на возраст около 300 тыс. лет для находок из подразделения V, в то время как техника ЭСР для поверхностных горизонтов плейстоценовых седиментов в Азох 1 дает оценку около 100 тыс. лет.

Серия изотопов урана была использована для датировки спелеотема из маленьких цельных камер во фронтальной и самой нижней секциях Азох 1. Возраст спелеотема оказался в пределах 1,19 ± 0,08 млн. лет. Это является минимальной оценкой времени зарождения самой пещеры, подтверждая древность отложений и указывая на возможность существования более ранних слоев со следами заселения.

Датировка методом 14С была использована для наиболее молодых отложений. Современные останки, найденные в подразделении 2 пещеры Азох 2, имели надежную датировку между 670 и 805 гг. н.э. Радиоуглеродная датировка древесного угля, обнаруженного рядом с современным зубом в подразделении А пещеры Азох 5, старше и имеет возраст от 722 до 384 гг. до н.э., в то время как верхняя поверхность седиментов в Азох 5 имеет возраст между 126 и 178 гг. н.э.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aitken, M. J., Clark, P. A., Gaffney, C. F., & Lovborg, L. (1985). Beta and gamma gradients. Nuclear Tracks, 10, 647–653.

    Google Scholar 

  • Bischoff, J. L., Fitzpatrick, J. A., Falgueres, C., Bahain, J. J., & Bullen, T. T. (1997). Geology and preliminary dating of the hominid-bearing sedimentary fill of the Sima de los Huesos Chamber, Cueva Mayor of the Sierra de Atapuerca, Burgos, Spain. Journal of Human Evolution, 33, 129–154.

    Article  Google Scholar 

  • Brock, F., Higham, T., Ditchfield, P., & Bronk-Ramsey, C. (2010). Current pretreatment methods for AMS radiocarbon dating at the oxford Radiocarbon Accelerator unit (ORAU). Radiocarbon, 52(1), 103–112.

    Article  Google Scholar 

  • Bronk Ramsey, C., Higham, T., & Leach, P. (2004a). Towards high precision AMS: Progress and limitations. Radiocarbon, 46(1), 17–24.

    Article  Google Scholar 

  • Bronk Ramsey, C., Higham, T., Bowles, A., & Hedges R. (2004b). Improvements to the pretreatment of bone at Oxford. Radiocarbon 46(1), 155–163.

    Google Scholar 

  • Bronk Ramsey, C., Higham, T., Owen, D. C, Pike, A., & Hedges, R. (2004c). Radiocarbon Dates from the Oxford Ams System: Archaeometry Datelist 31. Archaeometry 44 (3 Supplement 1), 1–149.

    Google Scholar 

  • de Torres, T., García-Alonso, P., Canoira, L., & Llamas, J. F. (2000). Aspartic acid racemization and protein preservation in the dentine of European bear teeth. In M. J. C. G. A. Goodfriend, M. L. Fogel, S. A. Macko, & J. F. Wehmiller (Eds.), Perspectives in amino acids and protein geochemistry (pp. 349–355). Oxford: Oxford University Press.

    Google Scholar 

  • Eggins, S., Grün, R., Pike, A., Shelley, A., & Taylor, L. (2003). 238U, 232Th profiling and U-series isotope analysis of fossil teeth by laser ablation ICPMS. Quaternary Science Reviews, 22, 1373–1382.

    Article  Google Scholar 

  • Eggins, S. M., Grün, R., McCulloch, M., Pike, A., Chappell, J., Kinsley, L., et al. (2005). In situ U-series dating by laser-ablation multi-collector ICPMS: New prospects for Quaternary geochronology. Quaternary Science Reviews, 24, 2523–2538.

    Article  Google Scholar 

  • Fernández, E., Ortiz, J. E., Pérez-Pérez, A., Pratts, E., Turbón, D., Torres, T., et al. (2009). Aspartic acid racemization variability in ancient human remains: Implications in the prediction of ancient DNA recovery. Journal of Archaeological Science, 36, 965–972.

    Article  Google Scholar 

  • Fernández-Jalvo, Y., King, T., Andrews, P., Yepiskoposyan, L., Moloney, N., Murray, J., et al. (2010). The Azokh Caves complex: Middle Pleistocene to Holocene human occupation in the Caucasus. Journal of Human Evolution, 58, 103–109.

    Article  Google Scholar 

  • Goodfriend, G. A. (1991). Patterns of racemization and epimerisation of aminoacids in land snails shells over the course of the Holocene. Geochimica et Cosmochimica Acta, 55, 293–302.

    Article  Google Scholar 

  • Grandal d´Anglade, A., & Vidal Romaní, J. R. (1997). A population study on the cave bear (Ursus spelaeus Ros.Hein.) from Cova Eirós (Triacastela, Galicia, Spain). Geobios, 30(5), 723–731.

    Google Scholar 

  • Grün, R. (2000). An alternative for model for open system U-series/ESR age calculations: (closed system U-series)-ESR, CSUS-ESR. Ancient TL, 18, 1–4.

    Google Scholar 

  • Grün, R. (2002). ESR dose estimation on fossil tooth enamel by fitting the natural spectrum into the irradiated spectrum. Radiation Measurements, 35, 87–93.

    Article  Google Scholar 

  • Grün, R. (2006). Direct dating of human fossils. Yearbook of Physical Anthropology, 49, 2–48.

    Article  Google Scholar 

  • Grün, R. (2009a). The DATA program for the calculation of ESR age estimates on tooth enamel. Quaternary Geochronology, 4, 231–232.

    Article  Google Scholar 

  • Grün, R. (2009b). The relevance of parametric U-uptake models in ESR age calculations. Radiation Measurements, 44, 472–476.

    Article  Google Scholar 

  • Grün, R., & Katzenberger-Apel, O. (1994). An alpha irradiator for ESR dating. Ancient TL, 12, 35–38.

    Google Scholar 

  • Grün, R., Schwarcz, H. P., & Chadam, J. M. (1988). ESR dating of tooth enamel: Coupled correction for U-uptake and U-series disequilibrium. Nuclear Tracks and Radiation Measurements, 14, 237–241.

    Article  Google Scholar 

  • Kaufman, D. S. (2000). Amino acid racemization in ostracodes. In G. Goodfriend, M. Collins, M. Fogel, S. Macko & J. Wehmiller (Eds.), Perspectives in amino acid and protein geochemistry (pp. 145–160). Oxford: Oxford University Press.

    Google Scholar 

  • Kaufman, D. S., & Manley, W. F. (1998). A new procedure for determining DL amino acid ratios in fossils using reverse phase liquid chromatography. Quaternary Geochronology, 17, 987–1000.

    Google Scholar 

  • King, T., Compton, T., Rosas, A., Andrews, P., Yepiskoyan, L., & Asryan, L. (2016). Azokh cave hominin remains. In Y. Fernández-Jalvo, T. King, L. Yepiskoposyan & P. Andrews (Eds.), Azokh Cave and the Transcaucasian Corridor (pp. 103–116). Dordrecht: Springer.

    Google Scholar 

  • Lee-Thorp, J. (2002). Two decades of progress towards understanding fossilization processes and isotopic signals in calcified tissue minerals. Archaeometry, 44, 435–446.

    Article  Google Scholar 

  • Lioubine, V. P. (2002). L’Acheuléen du Caucuase. Liège: Études et Recherches Archéologiques de l’Université de Liège, ERAUL 93.

    Google Scholar 

  • Marin-Monfort, M. D., Cáceres, I., Andrews, P., Pinto, A. C., & Fernández-Jalvo, Y. (2016). Taphonomy and site formation of Azokh 1. In Y. Fernández-Jalvo, T. King, L. Yepiskoposyan & P. Andrews (Eds.), Azokh Cave and the Transcaucasian Corridor (pp. 211–249). Dordrecht: Springer.

    Google Scholar 

  • Marsh, R. E. (1999). Beta-gradient isochrons using electron paramagnetic resonance: Towards a new dating method in archaeology. MSc thesis, McMaster University, Hamilton.

    Google Scholar 

  • Marzin, E. (1990). Essai de normalisation du protocole d’analyse des taux de racémisation des acides aminés: Applications a la datation d’ossements fossiles (pp. 167–178). VIII: Travaux du LAPMO.

    Google Scholar 

  • Masters, P. M. (1986). Amino acid racemisation dating. In M. R. Zimmerman & J. L. Angel (Eds.), Dating and age determination of biological materials (pp. 39–58). London: Croom Helm.

    Google Scholar 

  • Masters, P. M. (1987). Preferential preservation of non-collagenous protein during bone diagenesis: Implications for chronometric and stable isotopic measurements. Geochimica et Cosmochimica Acta, 51, 3209–3214.

    Article  Google Scholar 

  • Millard, A. R., & Hedges, R. E. M. (1996). A diffusion-adsorption model of uranium uptake by archaeological bone. Geochimica et Cosmochimica Acta, 60, 2139–2152.

    Article  Google Scholar 

  • Murray, J., Lynch, E. P., Domínguez-Alonso, P., & Barham, M. (2016). Stratigraphy and sedimentology of Azokh caves, South Caucasus. In Y. Fernández-Jalvo, T. King, L. Yepiskoposyan & P. Andrews (Eds.), Azokh Cave and the Transcaucasian Corridor (pp. 27–54). Dordrecht: Springer.

    Google Scholar 

  • Murray-Wallace, C. V., & Goede, A. (1995). Aminostratigraphy and electron spin resonance dating of Quaternary coastal neotectonism in Tasmania and the Bass Strait islands. Australian Journal of Earth Sciences, 42, 51–67.

    Article  Google Scholar 

  • Pickering, R., Dirks, P. H. G. M., Jinnah, Z., de Ruiter, D. J., Churchill, S. E., Herrires, A. I. R., et al. (2011). Australopithecus sediba at 1.977 Ma and implications for the origins of Genus Homo. Science, 333, 1421–1423.

    Article  Google Scholar 

  • Pike, A. W. G., Hedges, R. E. M., & Van Calsteren, P. (2002). U-series dating of bone using the diffusion-adsorption model. Geochimica et Cosmochimica Acta, 66, 4273–4286.

    Article  Google Scholar 

  • Reimer P. J. (2009) (Guest Editor) IntCal 09 Calibration Issue. Radiocarbon 51, 1111–1187.

    Google Scholar 

  • Richards, D. A., Bottrell, S. H., Cliff, R. A., Strohle, K., & Rowe, P. J. (1998). U-Pb dating of a speleothem of Quaternary age. Geochimica et Cosmochimica Acta, 62, 3683–3688.

    Article  Google Scholar 

  • Schwarcz, H. P., GriJn, R., & Tobias, P. V. (1994). ESR dating of the australopithecine site of Sterkfontein, Transvaal, South Africa. Journal of Human Evolution, 26, 175–181.

    Article  Google Scholar 

  • Smith, C. I., Faraldos, M., & Fernández-Jalvo Y. (2016). Bone diagenesis at Azokh cave, Nagorno-Karabakh. In Y. Fernández-Jalvo, T. King, L. Yepiskoposyan & P. Andrews (Eds.), Azokh Cave and the Transcaucasian Corridor (pp. 251–269). Dordrecht: Springer.

    Google Scholar 

  • Torres, T., Llamas, J. F., Canoira, L., & García-Alonso, P. (1999). Aspartic acid racemization in the dentine of bears (Ursus etruscus G. Cuvier, Ursus prearctos Boule, Ursus deningeri von Reichenau and Ursus spelaeus Rosenmüller-Heinroth). Tooth dentine amino acids versus Mollusca amino acids. In G. Palyi, C. Zucchi & L. Caglioti (Eds.), Advances in biochirality (pp. 247–256). Amsterdam: Elsevier.

    Google Scholar 

  • Torres, T., Ortiz, J. E., García, M. J., Llamas, F. J., Canoira, L., García de la Morena, M. A., et al. (2001). Geochemical evolution of amino acids in Pleistocene bears. Chirality, 13(8), 517–521.

    Article  Google Scholar 

  • Torres, T., Ortiz, J. E., Llamas, F. J., Canoira, L., Juliá, R., & García-Martínez, M. J. (2002). Bear dentine aspartic acid racemization analysis, proxy for pleistocene cave infills dating. Archeometry, 44(3), 417–426.

    Article  Google Scholar 

  • Torres, T., Ortiz, J. E., & Cobo, R. (2003). Deep cave sediments characteristics: Their influence in fossil preservation. Estudios Geológicos, 59(1–4), 195–204.

    Article  Google Scholar 

  • Torres, T., Ortiz, J. E., Cobo, R., de Hoz, P., García-Redondo, A., & Grün, R. (2007). Hominid exploitation of the environment and cave bear populations. The case of Ursus spelaeus Rosenmüller-Heinroth in Amutxate cave (Aralar, Navarra-Spain). Journal of Human Evolution, 52, 1–15.

    Article  Google Scholar 

  • Weiner, S. (2010). Microarchaeology: Beyond the visible archaeological record. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Woodhead, J., Hellstrom, J., Maas, R., Drysdale, R., Zanchetta, G., Devine, P., et al. (2006). U-Pb geochronology of speleothems by MC-ICPMS. Quaternary Geochronology, 1, 208–221.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yolanda Fernández-Jalvo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fernández-Jalvo, Y. et al. (2016). Appendix: Dating Methods Applied to Azokh Cave Sites. In: Fernández-Jalvo, Y., King, T., Yepiskoposyan, L., Andrews, P. (eds) Azokh Cave and the Transcaucasian Corridor. Vertebrate Paleobiology and Paleoanthropology. Springer, Cham. https://doi.org/10.1007/978-3-319-24924-7_16

Download citation

Publish with us

Policies and ethics