Skip to main content

Palaeoenvironmental Context of Coprolites and Plant Microfossils from Unit II. Azokh 1

  • Chapter
  • First Online:
Azokh Cave and the Transcaucasian Corridor

Part of the book series: Vertebrate Paleobiology and Paleoanthropology ((VERT))

Abstract

Poor pollen preservation in cave deposits is due to oxidation and increasing scarcity of pollen with distance from the cave entrance. After an attempt to obtain pollen grains from the sediments in Azokh 1 (Lesser Caucasus) failed, two coprolites from Unit II were investigated for their microfossil contents. They contained few diatoms (including the rare Pliocaenicus), even less pollen but numerous phytoliths that were compared with those in selected levels of cave deposits and modern soil from outside. Grass silica short cell phytoliths give evidence of vegetation typical of a temperate climate for Unit II, which included C3 grasses. Not only the coprolites from Azokh are useful but the whole sequence of deposits has good potential for palaeoclimatic reconstruction based on for phytolith studies. The diatoms observed indicate feeding from a relatively moist terrestrial environment and availability of lake and/or running water.

Резюме

Для изучения экологической ситуации в процессе возникновения отложений в пещере Азох 1 (Малый Кавказ) химическому анализу были подвергнуты два образца копролитов. Исследование было предпринято после попытки получения пыльцы из мелкозернистого седимента, которая окончилась неудачей по причине продолжительной оксидации и разложения в условиях постоянного изменения влажности в пещере, а также возрастающей нехватки переносимой по воздуху пыльцы от входа в глубь пещеры. В качестве альтернативного источника пыльцы и других микроископаемых элементов были исследованы два копролита, обнаруженных в подразделении II. Они содержали редко встречающиеся виды диатомеи, включая Pliocaenicus sp., немного пыльцы и большое количество фитолитов. Фитолиты в копролитах были сопоставлены с образцами, отобранными из нескольких слоев отложений внутри и из современной почвы за пределами пещеры. Различные типы фитолитов рода Poaceae (силицированные короткие клетки травы) в пределах подразделения II указывают на типичную для умеренного климата растительность, которая включает C3 травы и несколько отличается от современной смешанной флоры. Плотность лесного покрова не может быть определена без дальнейшего изучения нетравяных фитолитов в копролитах и седименте. Последние указывают на то, что мелкозернистая седиментная последовательность в Азох 1 имеет одинаково хороший потенциал для анализа фитолитов в копролитах и, следовательно, для палеоэкологической реконструкции всей последовательности отложений, в том числе и для более обширного региона. Обнаруженные диатомовые водоросли свидетельствуют об относительно влажной почве и наличии озерной или речной воды в качестве источника питания.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandre, A., Meunier, J. D., Lezine, A. M., Vincens, A., & Schwarz, D. (1997). Phytoliths: Indicators of grassland dynamics during the late Holocene in intertropical Africa. Palaeogeography, Paleoclimatology, Palaeoecology, 136, 213–229.

    Article  Google Scholar 

  • Allué, E. (2016). Charcoal remains from Azokh 1: Preliminary results. In Y. Fernández-Jalvo, T. King, L. Yepiskoposyan & P. Andrews (Eds.), Azokh Cave and the Transcaucasian Corridor (pp. 297–304). Dordrecht: Springer.

    Google Scholar 

  • Andrews, P., Hixson Andrews, S., King, T., Fernández-Jalvo, Y., & Nieto-Díaz, M. (2016). Paleoecology of Azokh 1. In Y. Fernández-Jalvo, T. King, L. Yepiskoposyan & P. Andrews (Eds.), Azokh Cave and the Transcaucasian Corridor (pp. 305–320). Dordrecht: Springer.

    Google Scholar 

  • Appendix: Fernández-Jalvo, Y., Ditchfield, P., Grün, R., Lees, W., Aubert, M., Torres, T., et al. (2016). Dating methods applied to Azokh cave sites. In Y. Fernández-Jalvo, T. King, L. Yepiskoposyan & P. Andrews (Eds.), Azokh Cave and the Transcaucasian Corridor (pp. 321–339). Dordrecht: Springer.

    Google Scholar 

  • Bremond, L., Alexandre, A., Peyron, O., & Guiot, J. (2005). Grass water stress estimated from phytoliths in West Africa. Journal of Biogeography, 32, 311–327.

    Article  Google Scholar 

  • Brown, D. A. (1984). Prospects and limits of a phytolith key for grasses in the central United States. Journal of Archaeological Science, 11, 345–368.

    Article  Google Scholar 

  • Carrión, J. S., Gil, G., Rodríguez, E., Fuentes, N., García-Antón, M., & Arribas, A. (2005). Palynology of badger coprolites from central Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 226, 259–271.

    Google Scholar 

  • Carrión, J. S., Scott, L., & Marais, E. (2006). Environmental implications of pollen spectra in bat droppings from south-eastern Spain and potential for palaeoenvironmental reconstructions. Review of Palaeobotany and Palynology, 140, 175–186.

    Article  Google Scholar 

  • Carrión, J. S., Scott, L., Arribas, A., Fuentes, N., Gil, G., & Montoya, E. (2007). Pleistocene landscapes in Central Iberia inferred from pollen analysis of hyena coprolites. Journal of Quaternary Science, 22, 191–202.

    Article  Google Scholar 

  • Clayton, W. D., & Renvoize, S. A. (1986). Genera Graminum. Grasses of the World. London: Her Majesty’s Stationary Office.

    Google Scholar 

  • Coles, G. M., & Gilbertson, D. D. (1994). The airfall-pollen budget of archaeologically important sites: Creswell Crags, England. Journal of Archaeological Science, 21, 735–755.

    Article  Google Scholar 

  • Cordova, C. (2011). The Stipa-type short cell. What does it mean taxonomically, climatically and ecologically? Proceedings of the 8th International Meeting on Phytolith Research. Estes Park, Colorado, USA.

    Google Scholar 

  • Cross, R. A. (1980). Distribution of sub-families of Gramineae in the old world. Kew Bulletin, 35, 279–289.

    Article  Google Scholar 

  • de Arruda Bueno, A., da Silva, C., Belentani, S., & Carlos Motta-Junior, J. (2002). Feeding ecology of the maned wolf, Chrysocyon brachyurus (Illiger, 1815) (Mammalia: Canidae), in the ecological station of Itirapina, Sao Paulo State. Brazil. Biota Neotropica, 2(2), 1–9.

    Article  Google Scholar 

  • Denham, T., Sniderman, K., Saunders, K. M., Winsborough, B., & Pierret, A. (2009). Contiguous multi-proxy analyses (X-radiography, diatom, pollen, and microcharcoal) of Holocene archaeological features at Kuk Swamp, Upper Wahgi Valley, Papua New Guinea. Geoarchaeology: An. International Journal, 24, 715–742.

    Google Scholar 

  • Fernández-Jalvo, Y., King, T., Andrews, P., & Yepiskoposyan, L. (2016). Introduction: Azokh Cave and the Transcaucasian Corridor. In Y. Fernández-Jalvo, T. King, L. Yepiskoposyan & P. Andrews (Eds.), Azokh Cave and the Transcaucasian Corridor (pp. 1–26). Dordrecht: Springer.

    Google Scholar 

  • Fernández-Jalvo, Y., King, T., Andrews, P., Yepiskoposyan, L., Moloney, N., Murray, J., et al. (2010). The Azokh Cave complex: Middle Pleistocene to Holocene human occupation in the Caucasus. Journal of Human Evolution, 58, 103–109.

    Article  Google Scholar 

  • Fredlund, G. G., & Tieszen, L. T. (1994). Modern phytolith assemblages from the North American Great Plains. Journal of Biogeography, 21, 321–335.

    Article  Google Scholar 

  • Gabrielian, E., & Fragman-Sapir, O. (2008). Flowers of Transcaucasus and adjacent areas: Including Armenia, Eastern Turkey, Southern Georgia, Azerbaijan and Northern Iran. Ruggell: Gantner Verlag.

    Google Scholar 

  • Gulisashvili, V. Z., Makhatadze, L. B., & Prilipko, L. I. (1975). Rastitel’nost′ Kavkaza. Moskva: Nauka. The vegetation of the Caucasus (Trans: Russian). http://www.rusnature.info/reg/15_6.htm.

  • Hunt, C. O., & Rushworth, G. (2005). Airfall sedimentation and pollen taphonomy in the West mouth of the Great Cave, Niah. Journal of Archaeological Science, 32, 465–473.

    Article  Google Scholar 

  • ICPN Working Group, Madella, M., Alexandre, A., & Ball, T. (2005). International Code for Phytolith Nomenclature 1.0. Annals of Botany, 96 (2), 253–260.

    Google Scholar 

  • Kealhofer, L. & Piperno, D. R. (1998). Opal Phytoliths in Southeast Asian Flora. Smithsonian Contributions to Botany 88, Washington, D.C. Smithsonian Institution Press.

    Google Scholar 

  • Magela da Costa, G., & Rúbia Ribeiro, V. (2001). The occurrence of tinsleyite in the archaeological site of Santana do Riacho, Brazil. Mineralogical Society of America, 86, 1053–1056.

    Google Scholar 

  • Marincea, S., Dumitras, D., & Gibert, R. (2002). Tinsleyite in the “dry” Cioclovina Cave (Sureanu Mountains, Romania): The second occurrence. European Journal of Mineralogy, 14, 157–164.

    Article  Google Scholar 

  • Marin-Monfort, M. D., Cáceres, I., Andrews, P., Pinto, A. C., & Fernández-Jalvo, Y. (2016). Taphonomy and Site Formation of Azokh 1. In Y. Fernández-Jalvo, T. King, L. Yepiskoposyan & P. Andrews (Eds.), Azokh Cave and the Transcaucasian Corridor (pp. 211–249). Dordrecht: Springer.

    Google Scholar 

  • Messager, E., Lordkipanidze, D., Delhon, C., & Ferring, C. R. (2010). Palaeoecological implications of the Lower Pleistocene phytolith record from the Dmanisi Site (Georgia). Palaeogeography, Palaeoclimatology, Palaeoecology, 288, 1–13.

    Article  Google Scholar 

  • Mulholland, S. C. (1989). Phytolith shape frequencies in North Dakota grasses: A comparison to general patterns. Journal of Archaeological Science, 16, 489–511.

    Article  Google Scholar 

  • Murray, J., Lynch, E. P., Domínguez-Alonso, P., & Barham, M. (2016). Stratigraphy and sedimentology of Azokh Caves, South Caucasus. In Y. Fernández-Jalvo, T. King, L. Yepiskoposyan & P. Andrews (Eds.), Azokh Cave and the Transcaucasian Corridor (pp. 27–54). Dordrecht: Springer.

    Google Scholar 

  • Navarro, C., Carrión, J. S., Munuera, M., & Prieto, A. R. (2001). A palynological study of karstic cave sediments on the basis of their potential for palaeoecological reconstruction. Review of Palaeobotany and Palynology, 117, 245–265.

    Google Scholar 

  • O’Rourke, M. K., & Mead, J. (1985). Late Pleistocene and Holocene pollen records from two caves in the Grand Canyon of Arizona, USA. American Association of Stratigrapphic Palynologists, 16, 169–185.

    Google Scholar 

  • Republic of Armenia. (1999). A country study on the biodiversity of Armenia. First National Report to the Convention on Biological Diversity. Yerevan: Ministry of Nature Protection.

    Google Scholar 

  • Rossouw, L. (2009). The application of fossil grass-phytolith analysis in the reconstruction of Cainozoic environments in the South African interior, PhD dissertation. University of the Free State, Bloemfontein.

    Google Scholar 

  • Rovner, I. (1971). Potential of opal phytoliths for use in palaoecological reconstruction. Quaternary Research, 1, 343–359.

    Article  Google Scholar 

  • Rovner, I. (1983). Plant phytolith analysis: Major advances in archaeobotanical research. Advances in Archaeological Method and Theory, 6, 225–266.

    Google Scholar 

  • Scott, L. (1987). Pollen analysis of hyena coprolites and sediments from Equus Cave, Taung, Southern Kalahari (S. Africa). Quaternary Research, 28, 144–156.

    Article  Google Scholar 

  • Scott, L., Fernández-Jalvo, Y., Carrión, J. S., & Brink, J. S. (2003). Preservation and interpretation of pollen in hyena corprolites: Taphonomical observations from Spain and Southern Africa. Palaeontologia Africana, 39, 83–91.

    Google Scholar 

  • Sharrow, S. H. (2007). Natural resource management on the other side of the world: The Nagorno Karabakh Republic. Society for Range Management February, 1–16.

    Google Scholar 

  • Skinner, J. D. (1976). Ecology of the brown hyena Hyaena brunnea in the Transvaal with a distribution map for southern Africa. South African Journal of Science, 72, 262–269.

    Google Scholar 

  • Stachura-Suchoples, K., & Jahn, R. (2009). Middle Miocene record of Plioaenicus changbaiense sp nov. from Changbai (Jilin Province, China). Acta Botanica Croatica, 68, 211–220.

    Google Scholar 

  • Thompson, R. S., Van Devender, T. S., Martin, P. S., Foppe, T., & Long, A. (1980). Shasta ground sloth (Nothrotheriops shastense Hoffstetter) at Shelter Cave, New Mexico: Environment, diet, and extinction. Quaternaty Research, 14, 360–376.

    Article  Google Scholar 

  • Thorn, V. C. (2004). Phytolith evidence for C4-dominated grassland since the early Holocene at Long Pocket, northeast Queensland, Australia. Quaternary Research, 61, 168–180.

    Article  Google Scholar 

  • Twiss, P. C., Suess, E., & Smith, R. M. (1969). Morphological classification of grass phytoliths. Proceedings of the Soil Science Society of America, 33, 109–115.

    Article  Google Scholar 

  • White, W. B., & Culver, D. C. (2012). Encyclopedia of Caves. Dordrecht: Springer.

    Google Scholar 

Download references

Acknowledgments

We thank Yolanda Fernández-Jalvo for providing the coprolites, initiating the study and providing relevant information. We are also grateful to the authorities of Nagorno-Karabakh for the support and permissions to work on these specimens. We are grateful to Tania King and diggers for careful work collecting these fossils, as well as field assistants for modern soil sampling on the slope of the cave. Thanks are extended to Karen Hardy for collecting sediment samples from the section of Azokh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Scott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Scott, L., Rossouw, L., Cordova, C., Risberg, J. (2016). Palaeoenvironmental Context of Coprolites and Plant Microfossils from Unit II. Azokh 1. In: Fernández-Jalvo, Y., King, T., Yepiskoposyan, L., Andrews, P. (eds) Azokh Cave and the Transcaucasian Corridor. Vertebrate Paleobiology and Paleoanthropology. Springer, Cham. https://doi.org/10.1007/978-3-319-24924-7_13

Download citation

Publish with us

Policies and ethics