Skip to main content

Taphonomy and Site Formation of Azokh 1

  • Chapter
  • First Online:
Azokh Cave and the Transcaucasian Corridor

Abstract

This chapter aims to describe the complete scenario that existed during the Middle Pleistocene in Azokh Caves and the Lesser Caucasus area from the evidence provided by the fossil assemblages recovered from excavations between 2002 and 2009. In the case of Azokh 1, taphonomic studies are particularly relevant since there is no such information from the early phase of excavations (1960–1980), during which much of the sediment was removed. This study, based on the taphonomy of large mammals, has allowed us to distinguish two sources of the large mammal fauna. Cave bear remains accumulated as a result of hibernation, and some of the carcasses were butchered by hominins in situ. The other faunal remains, mainly herbivores, were brought by hominins, but butchering took place somewhere else, not at the rear of the cave where they have been found. There is no evidence for simultaneous occupation of the cave by bears and hominins. There is also no evidence of human occupation at the rear of the cave, and they may have occupied the mouth of the cave during summer time. Cave bears could enter in winter-spring and occupied the rear of the cave. When the cave sediments reached close to the cave roof, bats occupied areas previously inhabited by bears and visited by hominins. Minerals neo-formed in fossils and sediments indicate seasonal changes in humidity and temperature inside the cave during the Pleistocene. Bat guano and corrosive fluid percolation caused strong corrosion on fossils after burial, damaging bones to such an extent that some of them could not be recovered. Bat guano was especially harmful to collagen, which is not preserved in most bones. Finally, during the Holocene, the top of the sequence was eroded by high energy water that removed the upper part of the sediments and opened the cave again to humans and animals.

Резюме

Тафономия представляет собой исследование процессов фоссилизации и “истории жизни” окаменелостей. Она изучает, в частности, причины смерти житвотных, каким образом их останки сохранились до наших дней и как расшифровать информацию, находящуюся на поверхности костей, в тканях, гео- и биохимическом составе. Расшифрованная информация рассказывает нам об экологических условиях прошлого, о вымерших животных и растениях и, в целом, о природе и изменениях в древних экосистемах и климате. Таким образом, тафономия является наукой, которая использует закодированную информацию и сохранившиеся следы деятельности человека для описания естественной “жизни” окаменелостей и восстановления объективной палеобиолого-палеоэкологической и другой палеонтологической информации с целью детальной реконструкции прошлого.

Целью данной главы является, в частности, описание максимально полного сценария событий, имевших место в течение среднего плейстоцена в Азохской пещере. Тафономические исследования на данной стоянке направлены на восстановление исходной информации с ранних фаз раскопок (1960–1980 гг.), в течение которых бóльшая часть седиментов была перемещена из пещеры. Сегодня мы обладаем ограниченными данными (иногда они полностью отсутствует) для выяснения контекстовых и постседиментных процессов, а также о том, каким образом формировалась пещера. Данное исследование, основанное на тафономии крупных млекопитающих, позволило нам выделить два источника происхождения этих форм животных. Причиной многочисленных останков пещерных медведей является их спячка, и в ряде случаев их туши были разделаны in situ. Другие останки фауны, относящиеся главным образом к травоядным, были привнесены гоминидами, но разделка туш происходила не у задней стены пещеры, где были обнаружены кости. Никаких следов проживания человека не было найдено в тыльной части стоянки; люди, возможно, находились у входа в пещеру главным образом в летнее время. Гигантский пещерный медведь (Ursus spelaeus) проживал в пещере в зимне-весенний период, занимая ее тыльную часть.

После того как отложения достигли потолка пещеры, летучие мыши заняли пространство в ее задней части, ранее принадлежащее медведям и время от времени посещаемое человеком. Новые формы минералов в окаменелостях и седиментах указывают на сезонные изменения во влажности и температуре внутри пещеры в эпоху плейстоцена. Но гуано и просачивание едкой жидкости вызвало сильное разъедание останков после их погребения, и некоторые из них сегодня невозможно восстановить. Особенно вредным было воздействие гуано на коллаген. И наконец, в эпоху голоцена поверхность седиментной последовательности подверглась эрозии за счет высокой энергии водных потоков, которые вымыли верхние слои седиментов и снова открыли пещеру людям и животным.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    These modifications were not recognized in our initial classification because they were not present in the original classification by Andrews and Fernández-Jalvo 1997.

  2. 2.

    This category has been proposed in Fernández-Jalvo and Andrews 2011.

References

  • Andrews, P. (1990). Owls, caves and fossils. London: Natural History Museum.

    Google Scholar 

  • Andrews, P. (1995). Experiments in taphonomy. Journal of Archaeological Science, 22, 147–153.

    Article  Google Scholar 

  • Andrews, P., & Armour-Chelu, M. (1998). Taphonomic observations on a surface bone assemblage in a temperate environment. Bulletin of the Geological Society of France, 169, 433–442.

    Google Scholar 

  • Andrews, P., & Cook, J. (1985). Natural modifications to bones in a temperate setting. Man (N.S.) 20, 675–691.

    Google Scholar 

  • Andrews, P., & Fernández-Jalvo, Y. (1997). Surface modifications of the Sima de los Huesos fossil humans. Journal of Human Evolution, 33, 191–217.

    Article  Google Scholar 

  • Andrews, P., & Turner, A. (1992). Life and death of the Westbury bears. Annales Zoologici Fennici, 28, 139–149.

    Google Scholar 

  • Andrews, P., & Whybrow, P. (2005). Taphonomic observations on a camel skeleton in a desert environment in Abu Dhabi. Palaeontologia Electronica. http://palaeo-electronica.org/paleo/2005_1/andrews23/issue1_05.htm.

  • Andrews, P., Hixson A. S., King, T., Fernández-Jalvo, Y., & Nieto-Díaz, M. (2016). Palaeoecology of Azokh 1. In Y. Fernández-Jalvo, T. King, L. Yepiskoposyan & P. Andrews (Eds.), Azokh Cave and the Transcaucasian Corridor (pp. 305–320). Dordrecht: Springer.

    Google Scholar 

  • Appendix: Fernández-Jalvo, Y., Ditchfield, P., Grün, R., Lees, W., Aubert, M., Torres, T., et al. (2016). Dating methods applied to Azokh cave sites. In Y. Fernández-Jalvo, T. King, L. Yepiskoposyan & P. Andrews (Eds.), Azokh Cave and the Transcaucasian Corridor (pp. 321–339). Dordrecht: Springer.

    Google Scholar 

  • Asryan, L., Moloney, N., & Ollé, A. (2016). Lithic assemblages recovered from Azokh 1. In Y. Fernández-Jalvo, T. King, L. Yepiskoposyan & P. Andrews (Eds.), Azokh Cave and the Transcaucasian Corridor (pp. 85–101). Dordrecht: Springer.

    Google Scholar 

  • Behrensmeyer, A. K. (1975). The taphonomy and paleoecology of Plio-Pleistocene vertebrate assemblages east of Lake Rudolf, Kenya. Bulletin of the Museum of Comparative Zoology, 146, 473–578.

    Google Scholar 

  • Behrensmeyer, A. K. (1978). Taphonomic and ecologic information from bone weathering. Paleobiology, 4, 150–162.

    Article  Google Scholar 

  • Behrensmeyer, A. K., & Hill, A. (1981). Fossils in the making. Chicago: University Chicago Press.

    Google Scholar 

  • Behrensmeyer, A. K., Gordon, K. D., & Yanagi, G. T. (1986). Trampling as a cause of bone surface damage and pseudo cutmarks. Nature, 319, 768–771.

    Article  Google Scholar 

  • Bell, L. S. (1990). Paleopathology and diagenesis: An SEM evaluation of structural changes using backscattered electron imaging. Jorunal of Archaeological Science, 17, 85–102.

    Article  Google Scholar 

  • Bell, L. S., Skinner, M. F., & Jones, S. J. (1996). The speed of postmortem change to the human skeleton and its taphonomic significance. Forensic Science International, 82, 129–140.

    Article  Google Scholar 

  • Bennett, E. A., Gorgé, O., Grange, T, Fernández-Jalvo, Y., & Geigl, E. M. (2016) Coprolites, paleogenomics and bone content analysis. In Y. Fernández-Jalvo, T. King, L. Yepiskoposyan & P. Andrews (Eds.), Azokh Cave and the Transcaucasian Corridor (pp. 271–286). Dordrecht: Springer.

    Google Scholar 

  • Binford, L. R. (1981). Bones, ancient men and modern myths. New York: Academic Press.

    Google Scholar 

  • Blasco, R., Rosell, J. Fernández, Peris, J., Cáceres, I., & Vergès, J. M. (2008). A new element of trampling: An experimental application on the Level XII faunal record of Bolomor Cave (Valencia, Spain). Journal of Archaeological Science, 35, 1605–1618.

    Article  Google Scholar 

  • Blott, S. J., & Pye, K. (2008). Particle shape: A review and new methods of characterization and classification. Sedimentology, 55, 31–63.

    Google Scholar 

  • Blumenschine, R. J. (1986). Early Hominid Scavenging Opportunities: Implications of Carcass Availability in the Serengeti and Ngorongoro Ecosystems. International Series 283. Oxford: British Archaeological Reports.

    Google Scholar 

  • Blumenschine, R. J. (1988). An experimental model of the timing of hominid and carnivore influence on archaeological bone assemblages. Journal of Archaeological Science, 15, 483–502.

    Article  Google Scholar 

  • Blumenschine, R. J. (1995). Percussion marks, tooth marks, and experimental determinations of the timing of hominid and carnivore access to long bones at FLK Zinjanthropus, Olduvai Gorge, Tanzania. Journal of Human Evolution, 29, 21–51.

    Article  Google Scholar 

  • Blumenschine, R. J., & Selvaggio, M. M. (1988). Percussion marks on bone surfaces as a new diagnostic on hominid behavior. Nature, 333, 763–765.

    Article  Google Scholar 

  • Boaz, N. T. (1982). American research on australopithecines and early Homo, 1925–1980. In F. Spencer (Ed.), A history of american physical anthropology, 1930–1980 (pp. 239–260). New York: Academic.

    Google Scholar 

  • Boaz, N. T., & Behrensmeyer, A. K. (1976). Hominid taphonomy: Transport of human skeletal parts in an artificial fluviatile environment. American Journal of Physical Anthropology, 45, 53–60.

    Article  Google Scholar 

  • Bocherens, H., Fizet, M., & Mariotti, A. (1994). Diet, physiology and ecology of fossil mammals as inferred from stable carbon and nitrogen isotope biogeochemistry: Implications for Pleistocene bears. Palaeogeography, Palaeoclimatology, Palaeoecology, 107, 213–225.

    Article  Google Scholar 

  • Bocherens, H., Billiou, D., Patou-Mathis, M., Bonjean, D., Otte, M., & Mariotti, A. (1997). Paleobiological implications of the isotopic signatures (13C,15N) of fossil mammal collagen in Scladina Cave (Sclayn, Belgium). Quaternary Research, 48, 370–380.

    Article  Google Scholar 

  • Bocherens, H., Drucker, D. G., Billiou, D., Geneste, J.-M., & van der Plicht, J. (2006). Bears and Humans in Chauvet Cave (Vallon-Pont-d’Arc, Ardèhe, France): Insights from stable isotopes and radiocarbon dating of bone collagen. Journal of Human Evolution, 50, 370–376.

    Article  Google Scholar 

  • Bonnichsen, R. (1979). Pleistocene bone technology in the beringian refugium. Mercury series 89. Ottawa: National Museum of Man.

    Google Scholar 

  • Brain, C. K. (1969). The contribution of Namib desert Hottentots to an understanding of australopithecine bone accumulations. Scientific Papers of the Namib Desert Research Station, 39, 13–22.

    Google Scholar 

  • Brain, C. K. (1981). The hunters or the hunted? An introduction to African Cave taphonomy. Chicago: University of Chicago Press.

    Google Scholar 

  • Britt, B. B., Scheetz, R. D., & Dangerfield, A. (2005) Jurassic dinosaurs and insects: The paleoecological role of Termites as carcass feeders. Geological Society of America 2005 Salt Lake City Annual Meeting (October 16–19, 2005).

    Google Scholar 

  • Britt, B. B., Scheetz, R. D., & Dangerfield, A. (2008). A suite of dermestid beetle traces on dinosaur bone from the Upper Jurassic Morrison Formation, Wyoming, USA. Ichnos, 15, 59–71.

    Article  Google Scholar 

  • Bromage, T. G., & Boyde, A. (1984). Microscopic criteria for the determination of directionality of cutmarks on bone. American Journal of Physical Anthropology, 65, 357–366.

    Article  Google Scholar 

  • Brothwell, D. (1976). Further evidence of bone chewing by ungulates: The sheep of North Ronaldsay, Orkney. Journal of Archaeological Science, 3, 179–182.

    Article  Google Scholar 

  • Bunn, H. T. (1983). Evidence on the diet and subsistence patterns of Plio-Pleistocene hominids at Koobi Fora, Kenya, and Olduvai Gorge, Tanzania. In J. Clutton-Brock & C. Grigson (Eds.) Animals and Archaeology (Vol. 163, pp. 21–30). International Series. Oxford: British Archaeological Reports.

    Google Scholar 

  • Cáceres, I. (2002). Tafonomía de yacimientos antrópicos en Karst. Complejo Galería (Sierra de Atapuerca, Burgos), Vanguard Cave (Gibraltar) y Abric Romaní (Capellades, Barcelona). PhD dissertation, Universitat Rovira i Virgili.

    Google Scholar 

  • Cáceres, I., Bravo, P., Esteban, M., Expósito, I., & Saladié, P. (2002). Fresh and heated bones breakage. An experimental approach. In M. De Renzi, M.V. Pardo Alonso, M. Belinchón, E. Peñalver, P. Montoya, A. Márquez-Aliaga (Eds.), Current Topics on Taphonomy and Fossilization (pp. 471–479). Valencia: Ayunatmiento de Valencia.

    Google Scholar 

  • Cáceres, I., Esteban-Nadal, M., Bennàsar, M., & Fernández-Jalvo, Y. (2011). Was it the deer or the fox? Journal of Archaeological Science, 38, 2767–2774.

    Article  Google Scholar 

  • Capaldo, S. D. (1995). Inferring hominid and carnivore behaviour from dual patterned archaeofaunal assemblages. PhD dissertation, Rutgers University, New Brunswick, New Jersey.

    Google Scholar 

  • Capaldo, S. D. (1997). Experimental determinations of carcass processing by Plio-Pleistocene hominids and carnivores at FLK 22 (Zinjanthropus), Olduvai Gorge, Tanzania. Journal of Human Evolution, 33, 555–597.

    Article  Google Scholar 

  • Capaldo, S. D. (1998). Methods, marks, and models for inferring hominids and carnivore behavior. Journal of Human Evolution, 35, 323–326.

    Article  Google Scholar 

  • Delaney-Rivera, C., Plummer, T. W., Hodgson, J. A., Forrest, F., Hertel, F., & Oliver, J. S. (2009). Pits and pitfalls: Taxonomic variability and patterning in tooth mark dimensions. Journal of Archaelogical Science, 36, 2597–2608.

    Article  Google Scholar 

  • Denys, C., Fernández-Jalvo, Y., & Dauphin, Y. (1995). Experimental taphonomy: Preliminary results of the digestion of micromammal bones in laboratory. Comptes Rendues de l’Academie Scientifique, série II a (Paris), 321, 803–809.

    Google Scholar 

  • Denys, C., Schuster, M., Guy, F., Mouchelin, G., Vignaud, P., Viriot, L., et al. (2007). Taphonomy in present day desertic environment: The case of the Djourab (Chad) Plio-Pleistocene deposits. Journal of Taphonomy, 5, 177–204.

    Google Scholar 

  • Díez, J. C., Fernández-Jalvo, Y., Rosell, J., & Cáceres, I. (1999). Zooarchaeology and taphonomy of Aurora stratum (Gran Dolina, Sierra de Atapuerca, Spain). Journal of Human Evolution, 37, 623–652.

    Article  Google Scholar 

  • Dodson, P. (1973). The significance of small bones in paleoecological interpretation. Contributions to Geology, University of Wyoming, 12, 15–19.

    Google Scholar 

  • Domínguez-Rodrigo, M. (1997). Meat-eating by early hominids at the FLK 22 Zinjanthropus site, Olduvai Gorge (Tanzania): An experimental approach using cut-mark data. Journal of Human Evolution, 33, 669–690.

    Article  Google Scholar 

  • Domínguez-Rodrigo, M. (1999). Flesh availability and bone modifications in carcasses consumed by lions: Palaecological relevance in hominid foraging patterns. Palaeogeography, Palaeoclimatology, Palaeoecology, 149, 373–388.

    Article  Google Scholar 

  • Domínguez-Rodrigo, M., & Barba, R. (2006). New estimates of tooth mark and percussion mark frequencies at the FLK Zinj site: The carnivore-hominid-carnivore hypothesis falsified. Journal of Human Evolution, 50, 170–194.

    Article  Google Scholar 

  • Domínguez-Rodrigo, M., & Piqueras, A. (2003). The use of tooth pits to identify carnivore taxa in tooth-marked archaeofaunas and their relevance to reconstruct hominid carcass processing behaviours. Journal of Archaelogical Science, 30, 1385–1391.

    Article  Google Scholar 

  • Dominguez-Rodrigo, M., de Juana, S., Galan, A., & Rodriguez, M. (2009). A new protocol to differentiate trampling marks from butchery marks. Journal of Archaeological Science, 36, 2643–2654.

    Article  Google Scholar 

  • Efremov, I. A. (1940). Taphonomy: New branch of paleontology. Pan-American Geologist, 74, 81–93.

    Google Scholar 

  • Efremov, I. A. (1950). Taphonomy and geological annals. Book 1. Burial of terrestrial fauna in the Paleozoic. Trudy Paleontologicheskogo instituta AN SSSR, vol. 24, pp. 1–177. (in Russian). Translated in 1953 in Annales du Centre d’Études et de Documentation Paléontologiques, 4, 1–196.

    Google Scholar 

  • Egeland, A. G., Egeland, C. P., & Bunn, H. T. (2008). Taphonomic analysis of a modern spotted hyena (Crocuta crocuta) den from Nairobi. Kenya. Journal of Taphonomy, 6(3–4), 301–335.

    Google Scholar 

  • Fernández, D. (1998). Biogeoquímica isotópica (13C, 15N) del Ursus Spelaeus del yacimiento de Cova Eiró s, Lugo. Cadernos do Laboratorio Xeolóxico de Laxe, 23, 237–249.

    Google Scholar 

  • Fernández, D., Vila, M., & Grandal, A. (2001). Stable isotopes data (delta 13C, delta 15N) from the cave bear (Ursus spelaeus): A new approach to its palaeoenvironment and dormancy. Proceedings of the Royal Society of Biological Sciences, 268B, 1159–1164.

    Article  Google Scholar 

  • Fernández-Jalvo, Y., & Andrews, P. (2003). Experimental effects of water abrasion on bone fragments. Journal of Taphonomy, 1(3), 147–163.

    Google Scholar 

  • Fernández-Jalvo, Y., & Andrews, P. (2011). When humans chew bones. Journal of Human Evolution, 60, 117–123.

    Article  Google Scholar 

  • Fernández-Jalvo, Y., & Andrews, P. (2016). Atlas of Taphonomic Identifications. Dordrecht: Springer.

    Google Scholar 

  • Fernández-Jalvo, Y., & Marin-Monfort, M. D. (2008). Experimental taphonomy in museums: Preparation protocols for skeletons and fossil vertebrates under the scanning electron microscopy. Geobios, 41(1), 157–181.

    Article  Google Scholar 

  • Fernández-Jalvo, Y., Denys, C., Andrews, P., Williams, C. T., Dauphin, Y., & Humphrey, L. (1998). Taphonomy and palaeoecology of Olduvai Bed-I (Pleistocene, Tanzania). Journal of Human Evolution, 34, 137–172.

    Article  Google Scholar 

  • Fernández-Jalvo, Y., Sánchez Chillón, B., Andrews, P., Fernández-López, S., & Alcalá Martínez, L. (2002). Morphological taphonomic transformations of fossil bones in continental environments, and repercussions on their chemical composition. Archaeometry, 44(3), 353–361.

    Article  Google Scholar 

  • Fernández-Jalvo, Y., Andrews, P., Pesquero, D., Smith, C., Marin-Monfort, D., Sánchez, B., et al. (2010a). Early bone diagenesis in temperate environments part I: Surface features and histology. Palaeogeography, Palaeoclimatology, Palaeoecology, 288, 62–81.

    Article  Google Scholar 

  • Fernández-Jalvo, Y., King, T., Andrews, P., Yepiskoposyan, L., Moloney, N., Murray, J., et al. (2010b). The Azokh Cave complex: Middle Pleistocene to holocene human occupation in the Caucasus. Journal of Human Evolution, 58, 103–109.

    Article  Google Scholar 

  • Fernández-Jalvo, Y., Valli, A. M. F., Marin-Monfort, D., & Pesquero M. D. (submitted). The taphonomy of Senèze. In E. Delson, M. Faure & C. Guérin (Eds). Senèze: Life in central france two million years ago. New York: Springer.

    Google Scholar 

  • Fernández-López, S. R. (1981). La evolución tafonómica (un planteamiento neodarwinista). Boletín de la Real Sociedad Española de Historia Natural, 79, 243–254.

    Google Scholar 

  • Fernández-López, S. R. (1991). Taphonomic concepts for a theoretical biochronology. Revista Española de Paleontología, 6, 37–49.

    Google Scholar 

  • Fernández-López, S. R. (1995). Taphonomie et interprétation des paléoenvironnements. Geobios, 18, 137–154.

    Article  Google Scholar 

  • Fernández-López, S. R. (2000). Temas de tafonomia. Madrid: Universidad Complutense de Madrid.

    Google Scholar 

  • Fernández-López, S. R. (2006). Taphonomic alteration and evolutionary taphonomy. Journal of Taphonomy, 4, 111–142.

    Google Scholar 

  • Figueirido, B., Palmqvist, P., & Pérez-Claros, J. A. (2009). Ecomorphological correlates of craniodental variation in bears and paleobiological implications for extinct taxa: An approach based on geometric morphometrics. Journal of Zoology, 277, 70–80.

    Article  Google Scholar 

  • Fiorillo, A. R. (1989). An experimental study of trampling: Implications for the fossil record. In R. Bonnichsen & M. H. Sorg (Eds.), Bone modification (pp. 61–71). Orono: University of Maine Center for the Study of the First Americans.

    Google Scholar 

  • Francillont-Viellot, H., Buffrenil, V. D. E., Castanet, J., Geraudie, J., Meunier, F. J., Sire, J. Y. et al., (1989) Microstructure and mineralization of vertebrate skeletal tissues. In J.G.Carter (Ed.), Skeletalb biomineralization: Patterns, processes and evolutionary trends (pp. 175–234). Washington D.C.: American Geophysical Union.

    Google Scholar 

  • Frostick, L., & Reid, I. (1983). Taphonomic significance of sub-aerial transport of vertebrate fossils on steep semi-arid slopes. Lethaia, 16, 157–164.

    Article  Google Scholar 

  • Gordon, C. C., & Buikstra, J. E. (1981). Soil pH, bone preservation and sampling bias at mortuary sites. American Antiquity, 46, 566–571.

    Article  Google Scholar 

  • Grandal d’Anglade, A., & López-González, F. (2005). Sexual dimorphism and autogenetic variation in the skull of the cave bear (Ursus spelaeus Rosenmüller) of the European upper pleistocene. Geobios, 38, 325–338.

    Google Scholar 

  • Grasman, B. T., & Hellgren, E. C. (1993). Phosphorus-nutrition in white-tailed deer nutrient balance, physiological-responses, and antler growth. Ecology, 74, 2279–2296.

    Article  Google Scholar 

  • Hackett, C. J. (1981). Microscopical focal destruction (tunnels) in excavated human bones. Medicine, Science and Law, 21, 243–265.

    Google Scholar 

  • Haynes, G. (1980). Evidence of carnivore gnawing on Pleistocene and recent mammalian bones. Paleobiology, 6, 341–351.

    Article  Google Scholar 

  • Haynes, G. (1983). A guide for differentiating mammalian carnivore taxa responsible for gnaw damage to herbivore limb bones. Paleobiology, 9, 164–172.

    Article  Google Scholar 

  • Hedges, R. M., Millars, A. R., & Pike, A. W. G. (1995). Measurements and relationships of diagenetic alteration of bone from three archaeological sites. Journal of Archaeological Science, 22, 201–209.

    Article  Google Scholar 

  • Hillson, S. (1992). Mammal bones and teeth: An introduction guide methods of identification. London: Institute of Archaeology, University College London.

    Google Scholar 

  • Huchet, J.-B., Deverly, D., Gutierrez, B., & Chaucha, C. (2011). Taphonomic evidence of a human skeleton gnawed by termites in a Moche-civilisation grave at huaca de la luna, Peru. International Journal of Osteoarchaeology, 21, 92–102.

    Article  Google Scholar 

  • Jans, M. M. E. (2005). Histological characterization of diagenetic alteration of archaeological bone (vol. 4). Geoarchaeological and bioarchaeological studies. Amsterdam: Institute for Geo and Bioarchaeology, Vrije Universiteit.

    Google Scholar 

  • Jans, M. M., Kars, H., Nielsen-Marsh, C. M., Smith, C. I., Nord, A. G., Arthur, P., et al. (2002). In situ preservation of archaeological bone: A histological study within multidisciplinary approach. Archaeometry, 44(3), 343–352.

    Article  Google Scholar 

  • Johnson, E. (1985). Current developments in bone technology. In M. B. Schiffer (Ed.), Advances in archaeological method and theory (Vol. 8, pp. 157–235). New York: Academic Press.

    Chapter  Google Scholar 

  • Karkanas, P., Bar-Yosef, O., Goldberg, P., & Weiner, S. (2000). Diagenesis in prehistoric caves: The use of minerals that form in situ to assess the completeness of the archaeological record. Journal of Archaeological Science, 27, 915–929.

    Article  Google Scholar 

  • Kibii, M. J. (2009). Taphonomic aspects of African porcupines (Hystrix cristata) in the Kenyan Highlands. Journal of Taphonomy, 7, 21–27.

    Google Scholar 

  • King, T., Compton, T., Rosas, A., Andrews, P. Yepiskoyan, L., & Asryan, L. (2016). Azokh Cave hominin remains. In Y. Fernández-Jalvo, T. King, L. Yepiskoposyan & P. Andrews (Eds.), Azokh Cave and the Transcaucasian Corridor (pp. 103–106). Dordrecht: Springer.

    Google Scholar 

  • Kitching, J. W. (1980). On some fossil arthropoda from the limeworks Makapansgat, Potgietersrus. Palaeontologica Africana, 23, 63–68.

    Google Scholar 

  • Klippel, W. E., & Synstelien, J. A. (2007). Rodents as taphonomic agents: Bone gnawing by brown rats and gray squirrels. Journal of Forensic Science, 52, 765–773.

    Article  Google Scholar 

  • Korth, W. W. (1979). Taphonomy of microvertebrate fossil assemblages. Annals of the Carnegie Museum, 48, 235–285.

    Google Scholar 

  • Kreutzer, L. A. (1992). Bison and deer bone mineral densities: Comparisons and implications for the interpretation of archaeological faunas. Journal of Archaeological Science, 19, 271–294.

    Article  Google Scholar 

  • Kurtén, B. (1958). Life and death of the Pleistocene cave bear. Acta Zool. Fennica, 95, 1–59.

    Google Scholar 

  • Kurtén, B. (1976). The cave bear story. New York: Columbia University Press.

    Google Scholar 

  • Lam, Y. M., Chen, X., Marean, C. W., & Frey, C. J. (1998). Bone density and long bone representation in archaeological faunas: Comparison results from CT and photon densitometry. Journal of Archaeological Science, 25, 559–570.

    Article  Google Scholar 

  • Leroi-Gourhan, A., & Brezillon, M. (1972). Fouilles de Pincevent: Essay d’analyse ethnographique d’un habitat Magdalénien. VIII (Supplement): Gallia-Préhistoire.

    Google Scholar 

  • López-González, F., Grandal-d’Anglade, A., & Ramón Vidal-Romaní, J. (2006). Deciphering bone depositional sequences in caves through the study of manganese coating. Journal of Archaeological Science, 33, 707–717.

    Google Scholar 

  • Lyman, R. L. (1984). Bone density and differential survivorship of fossil classes. Journal of Anthropological Archaeology, 3, 259–299.

    Article  Google Scholar 

  • Lyman, R. L. (1994). Vertebrate taphonomy. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Magela da Costa, G., & Rúbia Ribeiro, V. (2001). The occurrence of tinsleyite in the archaeological site of Santana do Riacho, Brazil. Mineralogical Society of America, 86, 1053–1056.

    Google Scholar 

  • Marincea, S., Dumitras, D., & Gibert, R. (2002). Tinsleyite in the ‘‘dry’’ Cioclovina Cave (Sureanu Mountains, Romania): The second occurrence. European Journal of Mineralogy, 14, 157–164.

    Article  Google Scholar 

  • Markova, A. K. (1982). Microteriofauna iz paleoliticheskoy peschernoy stoyanki Azikh. Palaeontoligischeskoy sb.-k Moskwa, 19, 14–28. (In Russian).

    Google Scholar 

  • Martin, F. M. (2008). Bone crunching felids at the end of the Pleistocene in Fuego-Patagonia. Chile Journal of Taphonomy, 6(3–4), 337–372.

    Google Scholar 

  • Mattson, D. J. (1998). Diet and morphology of extant and recently extinct northern bears. Ursus, 10, 479–496.

    Google Scholar 

  • Mayne, P. M. (1997). Fire modification of bone: A review of the literature. In W. D. Haglund & M. H. Sorg (Eds.), Forensic taphonomy: The postmortem fate of human remains (pp. 275–293). Boca Ratón: CRC Press.

    Google Scholar 

  • Mazza, P., Rustioni, M., & Boscagli, G. (1995). Evolution of ursid dentition; with inferences on the functional morphology of the masticatory apparatus in the genus Ursus. In J. Moggi-Cecchi (Ed.), Aspects of dental biology: Palaeontology, anthropology and evolution (pp. 147–157). Florence: International Institute for the study of man.

    Google Scholar 

  • Molleson T. (1990). The accumulation of trace metals in bone during fossilization. In N.D.Priest & F.L.Van der Vyver (Eds.), Trace Metals and Fluoride in Bones and Teeth (pp. 341–365). Boca Ratón: C.R.C. Press.

    Google Scholar 

  • Murray, J., Lynch, E. P., Domínguez-Alonso, P., & Barham, M. (2016). Stratigraphy and sedimentology of Azokh Caves, South Caucasus. In Y. Fernández-Jalvo, T. King, L. Yepiskoposyan & P. Andrews (Eds.), Azokh Cave and the Transcaucasian Corridor (pp. 27–54). Dordrecht: Springer.

    Google Scholar 

  • Nabaglo, L. (1973). Rats in the diet of the Barn owl. Journal of Zoology of London, 189, 540–545.

    Google Scholar 

  • Noe-Nygaard, N. (1989). Man-made trace fossils on bones. Human Evolution, 4, 461–491.

    Article  Google Scholar 

  • Olsen, S. L., & Shipman, P. (1988). Surface modification on bone: Trampling versus butchery. Journal of Archaeological Science, 15, 535–553.

    Article  Google Scholar 

  • Peigné, S., Goillot, C., Germonpré, M., Blondel, C., Bignon, O., & Merceron, G. (2009). Predormancy omnivory in European Cave bears evidenced by a dental microwear analysis of Ursus spelaeus from Goyet, Belgium. Proceedings of the National Academy of Sciences USA, 106, 15390–15393.

    Article  Google Scholar 

  • Pesquero, M. D., Ascaso, C., Alcalá, L., & Fernández-Jalvo, Y. (2010). A new taphonomic bioerosion in a Miocene lakes hore environment. Palaeogeography, Palaeoclimatology, Palaeoecology, 295, 192–198.

    Article  Google Scholar 

  • Pickering, T., & Wallis, J. (1997). Bone modifications resulting from captive chimpanzee mastication: Implications for the interpretation of Pliocene archaeological faunas. Journal of Archaeological Science, 24, 1115–1127.

    Article  Google Scholar 

  • Pinto, A. C., & Andrews, P. (2002). Taphonomy and palaeocology of quaternary bears from Northern Spain. Oviedo: FAO, NHM & DuPont/Grafisa.

    Google Scholar 

  • Pinto, A. C., & Andrews, P. J. (2004). Scavenging behaviour patterns in cave bears Ursus spelaeus. Revue de Paléobiologie, 23, 845–853.

    Google Scholar 

  • Pinto Llona, A. C., Andrews, P. J., & Etxebarría, F. (2005). Tafonomía y paleoecología de Úrsidos cuaternarios cantábricos. Oviedo: Fundación Oso de Asturias.

    Google Scholar 

  • Plummer, T. W., & Stanford, C. B. (2000). Analysis of a bone assemblage made by chimpanzees at Gombe National Park, Tanzania. Journal of Human Evolution, 39, 345–365.

    Article  Google Scholar 

  • Pobiner, B. (2008). Paleoecological information in predator tooth marks. Journal of Taphonomy, 6, 373–397.

    Google Scholar 

  • Pobiner, B. L., DeSilva, J., Sanders, W. J., & Mitani, J. C. (2007). Taphonomic analysis of skeletal remains from chimpanzee hunts at Ngogo, Kibale National Park, Uganda. Journal of Human Evolution, 52, 614–636.

    Article  Google Scholar 

  • Rabal-Garcés, R., Cuenca-Bescós, G., Canudo, J. I., & Torres, T. (2011). Was the European bear an occasional scavenger? Lethaia, 45(1), 96–108.

    Article  Google Scholar 

  • Rabinovich, R., & Horwitz, L. K. (1994). An experimental approach to the study of porcupine damage to bones. Taphonomie/Bone Modification. Treignes (Belgium): Editions du CEDARC.

    Google Scholar 

  • Richards, M. P., Pacher, M., Stiller, M., Quilès, J., Hofreiter, M., Constantin, S., et al. (2008). Isotopic evidence for omnivory among European cave bears: Late Pleistocene Ursus spelaeus from the Peştera cu Oase, Romania. Proceedings of the National Academy of Sciences of the United States of America, 105, 600–604.

    Article  Google Scholar 

  • Rodríguez, J. (1997). Análisis de la estructura de las communidades de maníferos del Pleistoceno de la Sierra de Atapuerca. Revisión de metodologías. PhD dissertation. Universidad Autónoma de Madrid.

    Google Scholar 

  • Saladié, P. (2009). Experimental Chewing and Gnawing of Humans and Other Primates Compared to Canids, Suids and Felids. PhD dissertation. Universitat Rovira i Virgili (Tarragona, Spain).

    Google Scholar 

  • Saladié, P., Rodríguez-Hiraldo, A., Díez, C., Martín-Rodríguez, P., & Carbonell, E. (2013). Range of bone modifications by human chewing. Journal of Archaeological Science, 40, 380–397.

    Article  Google Scholar 

  • Selvaggio M. M. (1994). Evidence from carnivore tooth marks and stone-tool-butchery marks for scavenging by hominids at FLK Zinjanthropus Olduvai Gorge, Tanzania. PhD dissertation, Rutgers University, New Brunswick.

    Google Scholar 

  • Selvaggio, M. M. (1998). Concernig the three stage model of carcass processing at FLK Zinjanthropus: A reply to Capaldo. Journal of Human Evolution, 35, 319–321.

    Article  Google Scholar 

  • Selvaggio, M. M., & Wilder, J. (2001). Identifying the involvement of multiple carnivore taxa with archaeological bone assemblages. Journal of Archaeological Science, 28, 465–470.

    Article  Google Scholar 

  • Shipman, P. (1981). Life History of a Fossil: An introduction to taphonomy and paleoecology. Cambridge: Harvard University Press.

    Google Scholar 

  • Shipman, P., & Rose, J. (1983). Early hominid hunting, butchering, and carcass-processing behaviors: Approaches to the fossil record. Journal of Anthropological Archaeology, 2, 57–98.

    Article  Google Scholar 

  • Shipman, P., & Rose, J. J. (1988). Bone tools: An experimental Approach. In S. Olsen (Ed.), Scanning electron microscopy in archaeology (pp. 303–335). Oxford: British Archaeological Reports International Series 452.

    Google Scholar 

  • Shipman, P., Foster, G., & Schoeninger, M. (1984). Burnt bones and teeth: An experimental study of color, morphology, crystal structure and shrinkage. Journal of Archaeological Science, 11, 307–325.

    Article  Google Scholar 

  • Smith, K. G. V. (1986). A manual of forensic entomology. London: British Museum (Natural History) Publications.

    Google Scholar 

  • Smith, C. I., Faraldos, M., & Fernández-Jalvo Y. (2016). Bone diagenesis at Azokh Caves. In Y. Fernández-Jalvo, T. King, L. Yepiskoposyan & P. Andrews (Eds.), Azokh Cave and the Transcaucasian Corridor (pp. 251–269). Dordrecht: Springer.

    Google Scholar 

  • Smith, C. I., Nielsen-Marsh, C. M., Jans, M. M. E., Arthur, P., Nord, A. G., & Collins, M. J. (2002). The strange case of Apigliano: Early ‘fossilization’ of medieval bone in southern Italy. Archaeometry, 44, 405–415.

    Article  Google Scholar 

  • Stiner, M. C., Weiner, S., Bar-Yosef, O., & Kuhn, S. L. (1995). Differential burning, recrystallization and fragmentation of archaeological bone. Journal of Archaeological Science, 22, 223–237.

    Article  Google Scholar 

  • Sutcliffe, A. J. (1970). Spotted hyaenas: Crusher, gnawer, digester and collector of bones. Nature, 227, 1110–1113.

    Article  Google Scholar 

  • Sutcliffe, A. J. (1973). Similarity of bones and antlers gnawed by deer to human artefacts. Nature, 246, 428–430.

    Article  Google Scholar 

  • Sutcliffe, A. J. (1977). Further notes on bones and antlers chewed by deer and other ungulates. Deer, 4, 73–82.

    Google Scholar 

  • Tappen, M. (1994). Bone weathering in the tropical rain forest. Journal of Archaeological Science, 21, 667–673.

    Article  Google Scholar 

  • Thompson, C. E. L., Ball, S., Thompson, T. J. U., & Gowland, R. (2011). The abrasion of modern and archaeological bones by mobile sediments: The importance of transport modes. Journal of Archaeological Science, 38, 784–793.

    Article  Google Scholar 

  • Tong, H. W., Zhang, S., Chen, F., & Li, Q. (2008). Rongements sélectifs des os par les porcs-épics et autres rongeurs: Cas de la grotte Tianyuan, un site avec des restes humains fossiles récemment découvert près de Zhoukoudian (Choukoutien). L’Anthropologie, 111, 353–369.

    Article  Google Scholar 

  • Trueman, C. N., & Martill, D. M. (2002). The long-term survival of bone: The role of bioerosion. Archaeometry, 44, 371–382.

    Article  Google Scholar 

  • Trueman, C. N. G., Behrensmeyer, A. K., Tuross, N., & Weiner, S. (2004). Mineralogical and compositional changes in bones exposed on soil surfaces in Amboseli National Park, Kenya: Diagenetic mechanisms and the role of sediment pore fluids. Journal of Archaeological Science, 31, 721–739.

    Article  Google Scholar 

  • Turner, A. (1983). The quantification of relative abundances in fossil and subfossil bone assemblages. Annals of the Transvaal Museum, 33, 311–321.

    Google Scholar 

  • Tütken, T., & Vennemann, T. W. (2011). Fossil bones and teeth: Preservation or alteration of biogenic compositions? Palaeogeography, Palaeoclimatology, Palaeoecology, 310, 1–8.

    Article  Google Scholar 

  • Van der Made, J., Torres, T., Ortiz, J. E., Moreno-Pérez, L., & Fernández-Jalvo, Y. (2016). The new material of large mammals from Azokh and comments on the older collections. In Y. Fernández-Jalvo, T. King, L. Yepiskoposyan & P. Andrews (Eds.), Azokh Cave and the Transcaucasian Corridor (pp. 117–159). Dordrecht: Springer.

    Google Scholar 

  • Vila Taboada, M., Fernández Mosquera, D., López González, F., Grandal d’Anglade, A., & Vidal Romaní, J. R. (1999). Paleoecological implications inferred from stable isotopic signatures (d13C, d15 N) in bone collagen of Ursus spelaeus ROS.-HEIN. Cadernos do Laboratorio Xeolóxico de Laxe, 24, 73–87.

    Google Scholar 

  • Vila Taboada, M., Fernández Mosquera, D., & Grandal d’Anglade, A. (2001) Cave bear’s diet: A new hypothesis based on stable isotopes. Cadernos do Laboratorio Xeolóxico de Laxe, 26, 431–439.

    Google Scholar 

  • Villa, P., & Mahieu, E. (1991). Breakage patterns of human long bones. Journal of Human Evolution, 21, 27–48.

    Article  Google Scholar 

  • Villa, P., Bouville, C., Courtin, J., Helmer, D., Mahieu, E., Shipman, P., et al. (1986). Cannibalism in the Neolithic. Science, 233, 431–436.

    Article  Google Scholar 

  • Voorhies, M. R. (1969). Taphonomy and population dynamics of an early Pliocene vertebrate fauna Knox County, Nebraska. Contributions to Geology, University of Wyoming Special Paper, 1, 1–69.

    Google Scholar 

  • Wedl, C. (1864). Uber einen im Zahnbein und Knochen keimenden Pilz. Akademi der Wissenschaften in Wien. Fitzungsbereichte Naturwissenschaftliche ABI. Mineralogi, biologi erdkunde, 50, 171–193.

    Google Scholar 

  • Weigelt, J. (1927). Resente Wirbeltierleichten und ihre Paläobiologische Bedeutung. Max Weg Verlag, Leipzig, p. 227. Translated in 1989 Recent Vertebrate Carcasses and their Paleobiological Implications. Chicago: University Chicago Press.

    Google Scholar 

  • Wentworth, C. K. (1919). A laboratory and field study of cobble abrasion. Journal of Geology, 27, 507–521.

    Article  Google Scholar 

  • White, T. D. (1992). Prehistoric Cannibalism at Mancos 5MTUMR-2346. Princeton: Princeton University Press.

    Book  Google Scholar 

  • White, W. B., & Culver, D. C. (2012). Encyclopedia of caves. Dordrecht: Springer.

    Google Scholar 

  • Wyckoff, R. W. G. (1972). The biochemistry of animal fossils. Bristol: Scientechnica Ltd.

    Google Scholar 

Download references

Acknowledgements

This chapter is based in part on the PhD Thesis investigation by DMM. We are deeply grateful to the authorities of Nagorno-Karabakh for the support and permissions to work at Azokh Caves and to analyze these fossils. We are grateful to Manuel Nieto who has greatly helped with the statistical treatments of this extensive data base, as well as to M.D. Pesquero for taphonomic discussions. Thanks also to Jesús Muñoz and Fernando Señor of the Photo Unit of the Museo Nacional de Ciencias Naturales. We also thank the EMUnit, Laura Tormo, Marta Furió, and Alberto Jorge, as well as Rafael Gómez (XRD analyses) for their professional work and deep involvement in the analysis of some of these samples. The authors are grateful for constructive comments from the three anonymous reviewers and the editor in charge (Tania King) which greatly improved this chapter. These taphonomic investigations have been made possible through funded research projects by the Spanish Ministry of Science (BTE2000-1309, BTE2003-01552, BTE 2007-66231 and CGL2010-19825).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yolanda Fernández-Jalvo .

Editor information

Editors and Affiliations

Supplementary Information

Supplementary Information

S.I. Table 10.1 Anatomical elements per animal sized groups in Unit I, plus 20 unidentified fragments that cannot be even assigned to animal size. Two fossils of U. spelaeus (one incisor (I3) and a femur fragment) were recovered from the modern burrows in Unit I that originated from Unit II
S.I. Table 10.2 Anatomical elements per animal sized groups in Unit II, plus 336 unidentified fragments that cannot be assigned to animal size
S.I. Table 10.3 Anatomical elements per animal sized groups in Unit III, including 34 unidentified fragments that cannot be assigned to animal size
S.I. Table 10.4 Anatomical elements per animal sized groups in Unit Vu, plus 18 unidentified fragments that cannot be assigned to animal size
S.I. Table 10.5 Anatomical elements per animal sized groups in Unit Vm, plus 82 unidentified fragments that cannot be even assigned to animal size

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Marin-Monfort, M.D., Cáceres, I., Andrews, P., Pinto-Llona, A.C., Fernández-Jalvo, Y. (2016). Taphonomy and Site Formation of Azokh 1. In: Fernández-Jalvo, Y., King, T., Yepiskoposyan, L., Andrews, P. (eds) Azokh Cave and the Transcaucasian Corridor. Vertebrate Paleobiology and Paleoanthropology. Springer, Cham. https://doi.org/10.1007/978-3-319-24924-7_10

Download citation

Publish with us

Policies and ethics