Skip to main content

On the Semantic Transparency of Visual Notations: Experiments with UML

  • Conference paper
  • First Online:
SDL 2015: Model-Driven Engineering for Smart Cities (SDL 2015)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 9369))

Included in the following conference series:

Abstract

Graphical notations designed by committees in the context of standardization bodies, like Object Management Group (OMG), are widely used in the industry and academia. Naive users of these notations have limited background on visualization, documentation and specification of workflows, data or software systems. Several studies have pointed out the fact that these notations do not convey any particular semantics and their understanding is not perceptually immediate. As reported in these studies, this lack of semantic transparency increases the cognitive load to differentiate between concepts, slows down the learning and comprehension of the language constructs. This paper reports on a set of experiments that confirm the lack of semantic transparency of the Unified Modeling Language (UML) as designed by OMG and compares this standard to alternative solutions where naive users are involved in the design of the notations to speed-up the learning of these languages to new users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexander, C.: Notes on the Synthesis of Form. Harvard Press, Cambridge (1964)

    Google Scholar 

  2. Biederman, I.: Recognition-by-components: a theory of human image understanding. Psychol. Rev. 94, 115–147 (1987)

    Article  Google Scholar 

  3. Boehm, B.W.: Software Engineering Economics. Prentice hall edn, Englewood Cliffs (1981)

    MATH  Google Scholar 

  4. Britton, C., Jones, S.: The untrained eye: how languages for software specification support understanding in untrained users. Hum.-Comput. Interact. 14(1), 191–244 (1999)

    Article  Google Scholar 

  5. Caire, P., Genon, N., Heymans, P., Moody, D.: Visual notation design 2.0: towards user comprehensible requirements engineering notations. In: 21st IEEE International Requirements Engineering Conference (RE), pp. 115–124 July 2013

    Google Scholar 

  6. Campbell, D.T., Stanley, J.C.: Experimental and Quasi-Experimental Designs for Research. Rand McNally College Publishing, Chicago (1963)

    Google Scholar 

  7. Cleveland, W.S., McGill, R.: Graphical perception: theory, experimentation, and application to the development of graphical methods. J. Am. Stat. Assoc. 79(387), 531–554 (1984)

    Article  Google Scholar 

  8. Doan, A., Ramakrishnan, R., Halevy, A.Y.: Crowdsourcing Systems on the World-wide Web. Commun. ACM 54(4), pp. 86–96 Apr 2011. http://doi.acm.org/10.1145/1924421.1924442

  9. Dobing, B., Parsons, J.: How UML is used. Commun. ACM 49(5), 109–113 (2006)

    Article  Google Scholar 

  10. El Kouhen, A.: Spécification d’un Métamodèle pour l’Adaptation des Outils UML. Ph.D. thesis, Université de Lille 1 (2013)

    Google Scholar 

  11. El Kouhen, A.: Semantic Transparency Experiment Artifacts. (2014) http://www.lifl.fr/~elkouhen/SemanticTransparencyExperiment/artifacts.zip

  12. Endres, A., Rombach, D.: A Handbook of Software and System Engineering: Empirical Observations Laws and Theories. Addison-Wesley, New York (2003)

    Google Scholar 

  13. Genon, N., Heymans, P., Amyot, D.: Analysing the cognitive effectiveness of the BPMN 2.0 visual notation. In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 377–396. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Goodman, N.: Languages of Art: An Approach to a Theory of Symbols. Hackett, Indianapolis (1976)

    Google Scholar 

  15. Group, S.: The Chaos Report. (1994). https://www.standishgroup.com/sample_research_files/chaos_report_1994.pdf

  16. Guizzardi, G., Pires, L., van Sinderen, M.: Ontology-based evaluation and design of domain-specific visual modeling languages. In: Advances in Information Systems Development, pp. 217–228. Springer, US (2006). http://dx.doi.org/10.1007/978-0-387-36402-5_19

  17. Howell, W.C., Fuchs, A.H.: Population stereotypy in code design. Organ. Behav. Hum. Perform. 3(3), 310–339 (1968)

    Article  Google Scholar 

  18. Heath, C., Heath, D.: Made to Stick: Why Some Ideas Take Hold and Others Come Unstuck. Arrow Books, London, England (2008)

    Google Scholar 

  19. Hitchman, S.: The details of conceptual modelling notations are important. Commun. Assoc. Inform. Syst. 9(10), 167–179 (2002)

    Google Scholar 

  20. ISO/IEC: 24744: Metamodel for Development Methodologies (2007)

    Google Scholar 

  21. Jacques, B.: Semiology of Graphics: Diagrams, Networks, Maps. University of Wisconsin Press, Madison, Wisconsin (1983)

    Google Scholar 

  22. Jones, S.: Stereotypy in pictograms of abstract concepts. Ergonomics 26, 605–611 (1983)

    Article  Google Scholar 

  23. Larkin, J.H., Simon, H.A.: Why a diagram is (sometimes) worth ten thousand words. Cogn. Sci. 11(1), 65–100 (1987)

    Article  Google Scholar 

  24. Lee, J.: Design rationale systems: understanding the issues. IEEE Expert 12(3), 78–85 (1997)

    Article  Google Scholar 

  25. Lohse, G.L.: A cognitive model for understanding graphical perception. Hum.-Comput. Interact. 8(4), 353–388 (1993)

    Article  Google Scholar 

  26. Martin, J.: Information Engineering. Prentice hall edn, Englewood Cliffs (1989)

    Google Scholar 

  27. Masri, K., Parker, D., Gemino, A.: Using iconic graphics in entity-relationship diagrams. J. Database Manag. 19(3), 22–41 (2008)

    Article  Google Scholar 

  28. Moody, D., van Hillegersberg, J.: Evaluating the visual syntax of UML: an analysis of the cognitive effectiveness of the UML family of diagrams. In: Gašević, D., Lämmel, R., Van Wyk, E. (eds.) SLE 2008. LNCS, vol. 5452, pp. 16–34. Springer, Heidelberg (2009). http://dx.doi.org/10.1007/978-3-642-00434-6_3

    Chapter  Google Scholar 

  29. Moody, D.L., Heymans, P., Matulevicius, R.: An evaluation of i* visual syntax.In: 17th IEEE International Conference on Requirements Engineering (2009)

    Google Scholar 

  30. Moody, D.: The physics of notations: toward a scientific basis for constructing visual notations in software engineering. IEEE Trans. Softw. Eng. 35(6), 756–779 (2009)

    Article  Google Scholar 

  31. Morris, S., Spanoudakis, G.: Uml: an evaluation of the visual syntax of thelanguage. In: Proceedings of the 34th Annual Hawaii International Conferenceon System Sciences. IEEE Computer Society, Washington, DC, USA (2001)

    Google Scholar 

  32. Muller, M.J., Kuhn, S.: Participatory design. ACM Commun. 36(6), 24–28 (1993)

    Article  Google Scholar 

  33. Nordbotten, J.C., Crosby, M.E.: The effect of graphic style on data model interpretation. Inform. Syst. J. 9(2), 139–155 (1999)

    Article  Google Scholar 

  34. Novick, L.R.: The importance of both diagrammatic conventions and domain-specific knowledge for diagram literacy in science: the hierarchy as an illustrative case. In: Barker-Plummer, D., Cox, R., Swoboda, N. (eds.) Diagrams 2006. LNCS (LNAI), vol. 4045, pp. 1–11. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  35. Organisation(ISO), I.S.: Graphical symbols - Test methods - Methods for TestingComprehensibility (ISO 9186-1). Geneva, Switzerland (2007)

    Google Scholar 

  36. Palmer, S., Rock, I.: Rethinking perceptual organization: the role of uniformconnectedness. Psychon. Bull. Rev. 1(1), 29–55 (1994).http://dx.doi.org/10.3758/BF03200760

  37. Petre, M.: Why looking isn’t always seeing: readership skills and graphical programming. ACM Commun. 38, 33–34 (1995)

    Article  Google Scholar 

  38. Reggio, G., Leotta, M., Ricca, F.: Who knows/uses what of the UML: a personal opinion survey. In: Dingel, J., Schulte, W., Ramos, I., Abrahão, S., Insfran, E. (eds.) MODELS 2014. LNCS, vol. 8767, pp. 149–165. Springer, Heidelberg (2014)

    Google Scholar 

  39. Siau, K.: Informational and computational equivalence in comparing information modelling methods. Database Manag. 15(1), 73–86 (2004)

    Article  Google Scholar 

  40. Winn, W.: An account of how readers search for information in diagrams. Contemp. Educ. Psychol. 18(2), 162–185 (1993)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the internationalization fund of ETS Montreal and the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amine El Kouhen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

El Kouhen, A., Gherbi, A., Dumoulin, C., Khendek, F. (2015). On the Semantic Transparency of Visual Notations: Experiments with UML. In: Fischer, J., Scheidgen, M., Schieferdecker, I., Reed, R. (eds) SDL 2015: Model-Driven Engineering for Smart Cities. SDL 2015. Lecture Notes in Computer Science(), vol 9369. Springer, Cham. https://doi.org/10.1007/978-3-319-24912-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24912-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24911-7

  • Online ISBN: 978-3-319-24912-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics