Skip to main content

Spinal Cord Plasticity and Neuromodulation After SCI

  • Chapter
  • First Online:
Emerging Therapies in Neurorehabilitation II

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 10))

Abstract

Over the past several decades, it has been shown that the spinal cord exhibits significant adaptive plasticity during development and throughout life. This is normally a positive phenomenon, allowing the spinal cord to develop fundamental functions and learn novel behaviours. However, after a spinal cord injury, the pathways controlling the behaviours mediated by the spinal cord are interrupted and maladaptive plasticity can take place. The traditional approach to rehabilitation after spinal cord injury is to apply physical training exercises improving the overall condition and functioning of the patient, and thus to indirectly promote neural recovery. Emerging neuromodulation therapies that complement physical therapy have been proposed to directly stimulate and modify specific impaired neural pathways and thereby produce a more satisfactory functional state. This chapter presents an overview of these new treatment approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abel, R., Schablowski, M., Rupp, R., Gerner, H.J.: Gait analysis on the treadmill-monitoring exercise in the treatment of paraplegia. Spinal Cord 40(1), 17–22 (2002)

    Article  Google Scholar 

  2. Aló, K.M., Holsheimer, J.: New trends in neuromodulation for the management of neuropathic pain. Neurosurgery 50(4), 690–703 (discussion 703–4) (2002)

    Google Scholar 

  3. Angeli, C.A., Edgerton, V.R., Gerasimenko, Y.P., Harkema, S.J.: Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain: J. Neurol. 137(Pt 5), 1394–1409 (2014)

    Article  Google Scholar 

  4. Aniss, A.M., Gandevia, S.C., Burke, D.: Reflex responses in active muscles elicited by stimulation of low-threshold afferents from the human foot. J. Neurophysiol. 67(5), 1375–1384 (1992)

    Google Scholar 

  5. Antri, M., Barthe, J.Y., Mouffle, C., Orsal, D.: Long-lasting recovery of locomotor function in chronic spinal rat following chronic combined pharmacological stimulation of serotonergic receptors with 8-OHDPAT and quipazine. Neurosci. Lett. 384, 162–167 (2005)

    Article  Google Scholar 

  6. Baranauskas, G., Nistri, A.: Sensitization of pain pathways in the spinal cord: cellular mechanisms. Prog. Neurobiol. 54(3), 349–365 (1998)

    Article  Google Scholar 

  7. Barthélemy, D., Leblond, H., Rossignol, S.: Characteristics and mechanisms of locomotion induced by intraspinal microstimulation and dorsal root stimulation in spinal cats. J. Neurophysiol. 97, 1986–2000 (2007)

    Article  Google Scholar 

  8. Beggs, A.L., Steinmetz, J.E., Romano, A.G., Patterson, M.M.: Extinction and retention of a classically conditioned flexor nerve response in acute spinal cat. Behav. Neurosci. 97(4), 530–540 (1983)

    Article  Google Scholar 

  9. Behrman, A.L., Bowden, M.G., Nair, P.M.: Neuroplasticity after spinal cord injury and training: an emerging paradigm shift in rehabilitation and walking recovery. Phys. Ther. 86(10), 1406–1425 (2006)

    Article  Google Scholar 

  10. Bélanger, M., Drew, T., Provencher, J., Rossignol, S., Belanger, M., Drew, T.: A comparison of treadmill locomotion in adult cats before and after spinal transection. J. Neurophysiol. 76(1), 471–491 (1996). http://jn.physiology.org/content/76/1/471.short

    Google Scholar 

  11. Bolton, D.A.E., Misiaszek, J.E.: Contribution of hindpaw cutaneous inputs to the control of lateral stability during walking in the cat. J. Neurophysiol. 102(3), 1711–1724 (2009)

    Article  Google Scholar 

  12. Borton, D., Bonizzato, M., Beauparlant, J., DiGiovanna, J., Moraud, E.M., Wenger, N., Musienko, P., Minev, I.R., Lacour, S.P., Millán, J.D.R., Micera, S., Courtine, G.: Corticospinal neuroprostheses to restore locomotion after spinal cord injury. Neurosci. Res. 78(1), 21–29 (2014)

    Article  Google Scholar 

  13. Bouyer, L.: Contribution of cutaneous inputs from the hindpaw to the control of locomotion. II. Spinal cats. J. Neurophys. 90(6), 3640–3653 (2003)

    Article  Google Scholar 

  14. Bouyer, L.J.G., Rossignol, S.: Contribution of cutaneous inputs from the hindpaw to the control of locomotion. I. Intact cats. J. Neurophysiol. 90(6), 3625–3639 (2003)

    Article  Google Scholar 

  15. Brus-Ramer, M., Carmel, J.B., Chakrabarty, S., Martin, J.H.: Electrical stimulation of spared corticospinal axons augments connections with ipsilateral spinal motor circuits after injury. J. Neurosci: official J. Soc. Neurosci. 27(50), 13793–13801 (2007)

    Article  Google Scholar 

  16. Carhart, M.R., He, J., Herman, R., D’Luzansky, S., Willis, W.T.: Epidural spinal-cord stimulation facilitates recovery of functional walking following incomplete spinal-cord injury. In: IEEE Transactions on Neural Systems and Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine and Biology Society, vol. 12, issue 1, pp. 32–42 (2004)

    Google Scholar 

  17. Carmel, J.B., Berrol, L.J., Brus-Ramer, M., Martin, J.H.: Chronic electrical stimulation of the intact corticospinal system after unilateral injury restores skilled locomotor control and promotes spinal axon outgrowth. J. Neurosci. 30(32), 10918–10926 (2010)

    Article  Google Scholar 

  18. Carmel, J.B., Kimura, H., Berrol, L.J., Martin, J.H.: Motor cortex electrical stimulation promotes axon outgrowth to brain stem and spinal targets that control the forelimb impaired by unilateral corticospinal injury. Eur. J. Neurosci. 37(7), 1090–1102 (2013)

    Article  Google Scholar 

  19. Carmel, J.B., Kimura, H., Martin, J.H.: Electrical stimulation of motor cortex in the uninjured hemisphere after chronic unilateral injury promotes recovery of skilled locomotion through ipsilateral control. J. Neurosci. 34(2), 462–466 (2014)

    Article  Google Scholar 

  20. Carp, J.S., Tennissen, A.M., Chen, X.Y., Wolpaw, J.R.: H-reflex operant conditioning in mice. J. Neurophysiol. 96(4), 1718–1727 (2006)

    Article  Google Scholar 

  21. Chen, Y., Chen, L., Wang, Y., Wolpaw, J.R., Chen, X.Y.: Operant conditioning of rat soleus H-reflex oppositely affects another H-reflex and changes locomotor kinematics. J. Neurosci. 31(31), 11370–11375 (2011)

    Article  Google Scholar 

  22. Chen, Y., Chen, X.Y., Jakeman, L.B., Chen, L., Stokes, B.T., Wolpaw, J.R.: Operant conditioning of H-reflex can correct a locomotor abnormality after spinal cord injury in rats. J. Neurosci. 26(48), 12537–12543 (2006)

    Article  Google Scholar 

  23. Colombo, E.V., Mandelli, C., Mortini, P., Messina, G., De Marco, N., Donati, R., Irace, C., Landi, A., Lavano, A., Mearini, M., Podetta, S., Servello, D., Zekaj, E., Valtulina, C., Dones, I.: Epidural spinal cord stimulation for neuropathic pain: a neurosurgical multicentric Italian data collection and analysis. Acta neurochirurgica 157(4), 711–720 (2015)

    Google Scholar 

  24. Compton, A.K., Shah, B., Hayek, S.M.: Spinal cord stimulation: a review. Curr. Pain Headache Rep. 16(1), 35–42 (2012)

    Article  Google Scholar 

  25. Côté, M., Ménard, A., Gossard, J.: Spinal cats on the treadmill: changes in load pathways. J. Neurosci. 23(7), 2789–2796 (2003)

    Google Scholar 

  26. Côté, M.P., Gossard, J.P.: Step training-dependent plasticity in spinal cutaneous pathways. J. Neurosci. 24(50), 11317–11327 (2004)

    Article  Google Scholar 

  27. Courtine, G., Gerasimenko, Y., van den Brand, R., Yew, A., Musienko, P., Zhong, H., Song, B., Ao, Y., Ichiyama, R.M., Lavrov, I., Roy, R.R., Sofroniew, M.V., Edgerton, V.R.: Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat. Neurosci. 12(10), 1333–1342 (2009)

    Article  Google Scholar 

  28. Crown, E.D., Ferguson, A.R., Joynes, R.L., Grau, J.W.: Instrumental learning within the spinal cord. II. Evidence for central mediation. Physiol. Behav. 77(2–3), 259–267 (2002)

    Article  Google Scholar 

  29. Culler, E., Mettler, F.A.: Conditioned behavior in a decorticate dog. J. Comp. Psychol. 18(3), 291–303 (1934)

    Article  Google Scholar 

  30. De Leon, R.D., Hodgson, J.A., Roy, R.R., Edgerton, V.: Full weight-bearing hindlimb standing following stand training in the adult spinal cat. J. Neurophysiol. 80(1), 83–91 (1998)

    Google Scholar 

  31. Dietz, V.: Locomotor capacity of spinal cord in paraplegic patients. Electroencephalogr. Clin. Neurophysiol. 109, 140–153 (1997)

    Google Scholar 

  32. Dietz, V., Fouad, K.: Restoration of sensorimotor functions after spinal cord injury. Brain 137(3), 654–667 (2014)

    Article  Google Scholar 

  33. Dietz, V., Harkema, S.J.: Locomotor activity in spinal cord-injured persons. J. Appl. Physiol. 96(5), 1954–1960 (2004)

    Article  Google Scholar 

  34. Dimitrijevic, M., Kakulas, B., McKay, W., Vrbova, G.: Restorative Neurol. Spinal Cord Inj. (2011)

    Google Scholar 

  35. Dimitrijević, M.R., Faganel, J., Gregorić, M., Nathan, P.W., Trontelj, J.K.: Habituation: effects of regular and stochastic stimulation. J. Neurol. Neurosurg. Psychiatry 35(2), 234–242 (1972)

    Article  Google Scholar 

  36. Ding, Y., Kastin, A.J., Pan, W.: Neural plasticity after spinal cord injury. Curr. Pharm. Des. 11(11), 1441–1450 (2005)

    Article  Google Scholar 

  37. Domingo, A., Al-Yahya, A.A., Asiri, Y., Eng, J.J., Lam, T.: A systematic review of the effects of pharmacological agents on walking function in people with spinal cord injury (2012)

    Google Scholar 

  38. Dunlop, S.A.: Activity-dependent plasticity: implications for recovery after spinal cord injury. Trends Neurosci. 31(8), 410–418 (2008)

    Google Scholar 

  39. Durkovic, R.G.: Classical conditioning, sensitization and habituation in the spinal cat. Physiol. Behav. 14(3), 297–304 (1975)

    Article  Google Scholar 

  40. Durkovic, R.G.: Retention of a classically conditioned reflex response in spinal cat. Behav. Neural Biol. 43(1), 12–20 (1985)

    Article  Google Scholar 

  41. Duysens, J., Stein, R.B.: Reflexes induced by nerve stimulation in walking cats with implanted cuff electrodes. Exp. Brain Res. 32(2), 213–224 (1978)

    Article  Google Scholar 

  42. Edgerton, V.R., Tillakaratne, N.J.K., Bigbee, A.J., de Leon, R.D., Roy, R.R.: Plasticity of the spinal neural circuitry after injury. Ann. Rev. Neurosci. 27, 145–167 (2004)

    Article  Google Scholar 

  43. Evatt, M.L., Wolf, S.L., Segal, R.L.: Modification of human spinal stretch reflexes: preliminary studies. Neurosci. Lett. 105(3), 350–355 (1989a)

    Google Scholar 

  44. Evatt, M., Wolf, S., Segal, R.: Modification of human spinal stretch reflexes: preliminary studies. Neurosci. Lett. 105(3), 350–355 (1989b)

    Google Scholar 

  45. Ferguson, A.R., Crown, E.D., Grau, J.W.: Nociceptive plasticity inhibits adaptive learning in the spinal cord. Neuroscience 141(1), 421–431 (2006)

    Google Scholar 

  46. Ferguson, A.R., Russel Huie, J., Crown, E.D., Baumbauer, K.M., Hook, M.A., Garraway, S.M., Lee, K.H., Hoy, K.C., Grau, J.W.: Maladaptive spinal plasticity opposes spinal learning and recovery in spinal cord injury. Front. Physiol. 3(October), 399 (2012)

    Google Scholar 

  47. Field-Fote, E.C.: Spinal cord control of movement: implications for locomotor rehabilitation following spinal cord injury. Phys. Ther. 80(5), 477–484 (2000)

    Google Scholar 

  48. Field-Fote, E.C., Roach, K.E.: Influence of a locomotor training approach on walking speed and distance in people with chronic spinal cord injury: a randomized clinical trial. Phys. Ther. 91(1), 48–60 (2011)

    Article  Google Scholar 

  49. Fitzgerald, L.A., Thompson, R.F.: Classical conditioning of the hindlimb flexion reflex in the acute spinal cat. Psychon. Sci. 8(5), 213–214 (1967)

    Google Scholar 

  50. Fong, A.J., Roy, R.R., Ichiyama, R.M., Lavrov, I., Courtine, G., Gerasimenko, Y.P., Tai, Y.C., Burdick, J., Edgerton, V.: Recovery of control of posture and locomotion after a spinal cord injury: solutions staring us in the face. Prog. Brain Res. 175(09), 393–418 (2009)

    Article  Google Scholar 

  51. Frigon, A., Rossignol, S.: Functional plasticity following spinal cord lesions. Prog. Brain Res. 157, 231–260 (2006)

    Article  Google Scholar 

  52. Fung, J., Barbeau, H.: Effects of conditioning cutaneomuscular stimulation on the soleus H-reflex in normal and spastic paretic subjects during walking and standing. J. Neurophysiol. 72(5), 2090–2104 (1994)

    Google Scholar 

  53. Gerasimenko, Y., Roy, R., Edgerton, V.: Epidural stimulation: comparison of the spinal circuits that generate and control locomotion in rats, cats and humans. Exp. Neurol. 209(2), 417 (2008)

    Google Scholar 

  54. Goldshmit, Y., Lythgo, N.: Treadmill training after spinal cord hemisection in mice promotes axonal sprouting and synapse formation and improves motor recovery. J. Neurotrauma 25(5), 449 (2008)

    Google Scholar 

  55. Grau, J., Barstow, D., Joynes, R.: Instrumental learning within the spinal cord: I. Behavioral properties. Behav. Neurosci. http://psycnet.apa.org/psycinfo/1998-03082-007 (1998)

    Google Scholar 

  56. Grau, J.W.: Learning from the spinal cord: how the study of spinal cord plasticity informs our view of learning. Neurobiol. Learn. Mem. 108, 155–171 (2014)

    Article  Google Scholar 

  57. Grau, J.W., Russell Huie, J., Garraway, S.M., Hook, M.A., Crown, E.D., Baumbauer, K.M., Lee, K.H., Hoy, K.C., Ferguson, A.R.: Impact of behavioral control on the processing of nociceptive stimulation (2012)

    Google Scholar 

  58. Groves, P.M., Lee, D., Thompson, R.F.: Effects of stimulus frequency and intensity on habituation and sensitization in acute spinal cat. Physiol. Behav. 4(3), 383–388 (1969)

    Article  Google Scholar 

  59. Guevremont, L., Renzi, C.G., Norton, J.A., Kowalczewski, J., Saigal, R., Mushahwar, V.K.: Locomotor-related networks in the lumbosacral enlargement of the adult spinal cat: activation through intraspinal microstimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 14, 266–272 (2006)

    Article  Google Scholar 

  60. Harkema, S., Gerasimenko, Y., Hodes, J., Burdick, J., Angeli, C., Chen, Y., Ferreira, C., Willhite, A., Rejc, E., Grossman, R.G., Edgerton, V.R.: Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet 377(9781), 1938–1947 (2011)

    Article  Google Scholar 

  61. Harkema, S., Hurley, S.: Human lumbosacral spinal cord interprets loading during stepping. J. Neurophysiol. 77(10), 797–811 (1997)

    Google Scholar 

  62. Harkema, S.J.: Neural plasticity after human spinal cord injury: application of locomotor training to the rehabilitation of walking. Neuroscientist 7(5), 455–468 (2001)

    Article  Google Scholar 

  63. Herman, R., He, J., Luzansky, S.D., Willis, W., Dilli, S.: Spinal cord stimulation facilitates functional walking in a chronic, incomplete spinal cord injured, pp. 65–68 (2002)

    Google Scholar 

  64. Hiersemenzel, L.P., Curt, A., Dietz, V.: From spinal shock to spasticity: neuronal adaptations to a spinal cord injury. Neurology 54(8), 1574–1582 (2000)

    Google Scholar 

  65. Hodgson, J.A., Roy, R.R., de Leon, R.D., Dobkin, B.H., Edgerton, V.: Can the mammalian lumbar spinal cord learn a motor task? Med. Sci. Sports Exerc. 26, 1491–1497 (1994)

    Article  Google Scholar 

  66. Hook, M.A., Grau, J.W.: An animal model of functional electrical stimulation: evidence that the central nervous system modulates the consequences of training. Spinal Cord: Official J. Int. Med. Soc. Paraplegia 45(11), 702–712 (2007)

    Article  Google Scholar 

  67. Hoover, J.E., Durkovic, R.G.: Retention of a backward classically conditioned reflex response in spinal cat. Exp. Brain Res. 77(3), 621–627 (1989)

    Article  Google Scholar 

  68. Hubli, M., Dietz, V.: The physiological basis of neurorehabilitation–locomotor training after spinal cord injury. J. Neuroeng. Rehabil. 10, 5 (2013)

    Article  Google Scholar 

  69. Jindrich, D.L., Joseph, M.S., Otoshi, C.K., Wei, R.Y., Zhong, H., Roy, R.R., Tillakaratne, N.J.K., Edgerton, V.R.: Spinal learning in the adult mouse using the Horridge paradigm. J. Neurosci. Methods 182(2), 250–254 (2009)

    Article  Google Scholar 

  70. Kemler, M., Vet, H.D.: The effect of spinal cord stimulation in patients with chronic reflex sympathetic dystrophy: Two years’ follow up of the randomized controlled trial. Ann. Neurol. 55(1), 13–18 (2004)

    Google Scholar 

  71. Knikou, M.: Plantar cutaneous afferents normalize the reflex modulation patterns during stepping in chronic human spinal cord injury. J. Neurophysiol. 103(3), 1304–1314 (2010)

    Article  Google Scholar 

  72. Knikou, M.: Plasticity of corticospinal neural control after locomotor training in human spinal cord injury. Neural Plast. 2012 (2012)

    Google Scholar 

  73. Kumar, K., Nath, R., Wyant, G.: Treatment of chronic pain by epidural spinal cord stimulation: a 10-year experience. J. Neurosurg. 75, 402–407 (1991)

    Google Scholar 

  74. Kumar, K., Toth, C., Nath, R., Laing, P.: Epidural spinal cord stimulation for treatment of chronic painsome predictors of success. A 15-year experience. Surg. Neurol. 50, 110 (1998)

    Google Scholar 

  75. Lam, T., Eng, J.J., Wolfe, D.L., Hsieh, J.T., Whittaker, M.: A systematic review of the efficacy of gait rehabilitation strategies for spinal cord injury. Top. Spinal Cord Inj. Rehabil. 13(1), 32–57 (2007)

    Google Scholar 

  76. Landry, E.S., Lapointe, N.P., Rouillard, C., Levesque, D., Hedlund, P.B., Guertin, P.A.: Contribution of spinal 5-HT1A and 5-HT7 receptors to locomotor-like movement induced by 8-OH-DPAT in spinal cord-transected mice. Eur. J. Neurosci. 24, 535–546 (2006)

    Article  Google Scholar 

  77. Latremoliere, A., Woolf, C.J.: Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J. Pain: Official J. Am. Pain Soc. 10(9), 895–926 (2009)

    Google Scholar 

  78. Leonard, C.T., Matsumoto, T., Diedrich, P.: Human myotatic reflex development of the lower extremities. Early Human Dev. 43(1), 75–93 (1995)

    Article  Google Scholar 

  79. Lin, S.I., Yang, W.C.: Effect of plantar desensitization on postural adjustments prior to step initiation. Gait Posture 34(4), 451–456 (2011)

    Article  Google Scholar 

  80. Lloyd, D.P.: Post-tetanic potentiation of response in monosynaptic reflex pathways of the spinal cord. J. Gen. Physiol. 33(2), 147–170 (1949)

    Article  Google Scholar 

  81. Lovely, R.G., Gregor, R.J., Roy, R.R., Edgerton, V.R.: Effects of training on the recovery of full-weight-bearing stepping in the adult spinal cat. Exp. Neurol. 92(2), 421–435 (1986)

    Article  Google Scholar 

  82. Manella, K.J., Roach, K.E., Field-Fote, E.C.: Operant conditioning to increase ankle control or decrease reflex excitability improves reflex modulation and walking function in chronic spinal cord injury. J. Neurophysiol. 109(11), 2666–2679 (2013)

    Article  Google Scholar 

  83. Marsh, B.C., Astill, S.L., Utley, A., Ichiyama, R.M.: Movement rehabilitation after spinal cord injuries: emerging concepts and future directions. Brain Res. Bull. 84(4–5), 327–336 (2011)

    Article  Google Scholar 

  84. Martin, G.F., Cabana, T., Culberson, J.L., Curry, J.J., Tschismadia, I.: The early development of corticobulbar and corticospinal systems. Anat. Embryol. 161(2), 197–213 (1980)

    Article  Google Scholar 

  85. Martin, J.H.: The corticospinal system: from development to motor control. Neuroscientist 11(2), 161–173 (2005)

    Article  Google Scholar 

  86. Martin, J.H., Friel, K.M., Salimi, I., Chakrabarty, S.: Activity- and use-dependent plasticity of the developing corticospinal system. Neurosci. Biobehav. Rev. 31(8), 1125–1135 (2007)

    Article  Google Scholar 

  87. Martin, J.H., Lee, S.J.: Activity-dependent competition between developing corticospinal terminations. Neuroreport 10(11), 2277–2282 (1999)

    Article  Google Scholar 

  88. Martinez, M., Brezun, J.-M., Zennou-Azogui, Y., Baril, N., Xerri, C.: Sensorimotor training promotes functional recovery and somatosensory cortical map reactivation following cervical spinal cord injury. Eur. J. Neurosci. 30(12), 2356–2367 (2009)

    Article  Google Scholar 

  89. Mazzocchio, R., Kitago, T., Liuzzi, G., Wolpaw, J.R., Cohen, L.: Plastic changes in the human H-reflex pathway at rest following skillful cycling training. Clin. Neurophysiol. 117(8), 1682–1691 (2006)

    Article  Google Scholar 

  90. McCrea, D.A.: Spinal circuitry of sensorimotor control of locomotion. J. Physiol. 533(1), 41–50 (2001)

    Google Scholar 

  91. Mekhail, N.A., Mathews, M., Nageeb, F., Guirguis, M., Mekhail, M.N., Cheng, J.: Retrospective review of 707 cases of spinal cord stimulation: indications and complications. Pain Pract. 11(2), 148–153 (2011)

    Google Scholar 

  92. Merrill, D.R.: Materials considerations of implantable neuroengineering devices for clinical use. Curr. Opin. Solid State Mater. Sci. 18(6), 329–336 (2014)

    Article  Google Scholar 

  93. Meunier, S., Russmann, H., Simonetta-Moreau, M., Hallett, M.: Changes in spinal excitability after PAS. J. Neurophysiol. 97(4), 3131–3135 (2007)

    Article  Google Scholar 

  94. Mondello, S.E., Kasten, M.R., Horner, P.J., Moritz, C.T.: Therapeutic intraspinal stimulation to generate activity and promote long-term recovery. Front. Neurosci. 8(February), 21 (2014)

    Google Scholar 

  95. Moritz, C.T., Lucas, T.: Forelimb movements and muscle responses evoked by microstimulation of cervical spinal cord in sedated monkeys. J. Neurophysiol. 97, 110 (2007)

    Google Scholar 

  96. Mrachacz-Kersting, N., de Brito Silva, P., Makihara, Y., Arendt-Nielsen, L., Sinkjaer, T., Kerstin, U.G.: Stretch reflex conditioning in humans implications for function. In: Replace, Repair, Restore, Relieve Bridging Clinical and Engineering Solutions in Neurorehabilitation, pp. 103–111 (2014)

    Google Scholar 

  97. Muir, G.D.: Early ontogeny of locomotor behaviour: a comparison between altricial and precocial animals. Brain Res. Bull. 53(5), 719–726 (2000)

    Article  Google Scholar 

  98. Muir, G.D., Steeves, J.D.: Phasic cutaneous input facilitates locomotor recovery after incomplete spinal injury in the chick. J. Neurophysiol. 74(1), 358–368 (1995)

    Google Scholar 

  99. Mushahwar, V., Aoyagi, Y.: Movements generated by intraspinal microstimulation in the intermediate gray matter of the anesthetized, decerebrate, and spinal cat. Can. J. Physiol. Pharmacol. 82, 702 (2004)

    Google Scholar 

  100. Myklebust, B.M., Gottlieb, G.L., Penn, R.D., Agarwal, G.C.: Reciprocal excitation of antagonistic muscles as a differentiating feature in spasticity. Ann. Neurol. 12(4), 367–374 (1982)

    Article  Google Scholar 

  101. Nielsen, J., Crone, C., Hultborn, H.: H-reflexes are smaller in dancers from The Royal Danish Ballet than in well-trained athletes. Eur. J. Appl. Physiol. Occup. Physiol. 66(2), 116–121 (1993)

    Article  Google Scholar 

  102. Panek, I., Bui, T., Wright, A.T., Brownstone, R.M.: Cutaneous afferent regulation of motor function. Acta Neurobiol. Exp. 74(2), 158–171 (2014)

    Google Scholar 

  103. Prosser, C., Hunter, W.: The extinction of startle responses and spinal reflexes in the white rat. Am. J. Physiol. 17, 609 (1936)

    Google Scholar 

  104. Rankin, C.H., Abrams, T., Barry, R.J.: Habituation revisited: an updated and revised description of the behavioral characteristics of habituation. Neurobiol. Learn. 92(2), 135–138 (2009)

    Google Scholar 

  105. Riddoch, G.: The reflex functions of the completely divided spinal cord in man, compared with those associated with less severe lesions. Brain 40(2–3), 264–402 (1917)

    Article  Google Scholar 

  106. Rossignol, S.: Plasticity of connections underlying locomotor recovery after central and/or peripheral lesions in the adult mammals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361(1473), 1647–1671 (2006)

    Article  Google Scholar 

  107. Rossignol, S., Dubuc, R., Gossard, J.P.: Dynamic sensorimotor interactions in locomotion. Physiol. Rev. 86(1), 89–154 (2006)

    Article  Google Scholar 

  108. Rossignol, S., Frigon, A.: Recovery of locomotion after spinal cord injury: some facts and mechanisms. Ann. Rev. Neurosci. 34, 413–440 (2011a)

    Google Scholar 

  109. Rossignol, S., Frigon, A.: Recovery of locomotion after spinal cord injury: some facts and mechanisms. Ann. Rev. Neurosci. 34, 413–440 (2011b)

    Google Scholar 

  110. Sadowsky, C., Volshteyn, O., Schultz, L., McDonald, J.W.: Spinal cord injury. Disabil. Rehabil. 24(13), 680–687 (2002)

    Article  Google Scholar 

  111. Schneider, C., Capaday, C.: Progressive adaptation of the soleus H-reflex with daily training at walking backward. J. Neurophysiol. 89(2), 648–656 (2003)

    Article  Google Scholar 

  112. Segal, R.L., Wolf, S.L.: Operant conditioning of spinal stretch reflexes in patients with spinal cord injuries. Exp. Neurol. 130(2), 202–213 (1994)

    Article  Google Scholar 

  113. Sherrington, C.S.: Observations on the scratch-reflex in the spinal dog. J. Physiol. 34(1–2), 1–50 (1906)

    Article  MathSciNet  Google Scholar 

  114. Sherrington, C.S.: Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. J. Physiol. 40(1–2), 28 (1910)

    Article  Google Scholar 

  115. Shurrager, P.S., Culler, E.: Conditioning in the spinal dog. J. Exp. Psychol. 26(2), 133–159 (1940)

    Article  Google Scholar 

  116. Shurrager, P.S., Dykman, R.A.: Walking spinal carnivores. J. Comp. Physiol. Psychol. 44(3), 252–262 (1951)

    Google Scholar 

  117. Slawinska, U., Majczynski, H., Dai, Y., Jordan, L.M., Sawiska, U., Majczyski, H., Dai, Y., Jordan, L.M.: The upright posture improves plantar stepping and alters responses to serotonergic drugs in spinal rats. J. Physiol. 590(Pt 7), 1721–1736 (2012)

    Article  Google Scholar 

  118. Smith, R.R., Shum-Siu, A., Baltzley, R., Bunger, M., Baldini, A., Burke, D.A., Magnuson, D.S.K.: Effects of swimming on functional recovery after incomplete spinal cord injury in rats. J. Neurotrauma 23(6), 908–919 (2006)

    Google Scholar 

  119. Stefan, K., Kunesch, E., Cohen, L.G., Benecke, R., Classen, J.: Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 123 Pt 3, 572–84. http://www.ncbi.nlm.nih.gov/pubmed/10686179 (2000)

    Google Scholar 

  120. Taylor, A.J., Menz, H.B., Keenan, A.-M.: Effects of experimentally induced plantar insensitivity on forces and pressures under the foot during normal walking. Gait Posture 20(3), 232–237 (2004)

    Article  Google Scholar 

  121. Thomas, A.M., Simpson, D.M.: Contralateral weakness following botulinum toxin for poststroke spasticity. Muscle Nerve 46(3), 443–448 (2012)

    Article  Google Scholar 

  122. Thompson, A.K., Chen, X.Y., Wolpaw, J.R.: Acquisition of a simple motor skill: task-dependent adaptation plus long-term change in the human soleus H-reflex. J. Neurosci. 29(18), 5784–5792 (2009)

    Article  Google Scholar 

  123. Thompson, A.K., Pomerantz, F.R., Wolpaw, J.R.: Operant conditioning of a spinal reflex can improve locomotion after spinal cord injury in humans. J. Neurosci. 33(6), 2365–2375 (2013)

    Article  Google Scholar 

  124. Thompson, A.K., Wolpaw, J.R.: Restoring walking after spinal cord injury: operant conditioning of spinal reflexes can help. Neuroscientist (March) (2014)

    Google Scholar 

  125. Thompson, R.F., Spencer, W.: Habituation: a model phenomenon for the study of neuronal substrates of behavior. Psychol. Rev. (1966)

    Google Scholar 

  126. Thoumie, P., Do, M.C.: Changes in motor activity and biomechanics during balance recovery following cutaneous and muscular deafferentation. Exp. Brain Res. Experimentelle Hirnforschung. Experimentation cerebrale 110(2), 289–297 (1996)

    Google Scholar 

  127. Ting, L.H., Macpherson, J.M.: Ratio of shear to load ground-reaction force may underlie the directional tuning of the automatic postural response to rotation and translation. J. Neurophysiol. 92(2), 808–823 (2004)

    Article  Google Scholar 

  128. Turner, J.A., Loeser, J.D., Deyo, R.A., Sanders, S.B.: Spinal cord stimulation for patients with failed back surgery syndrome or complex regional pain syndrome: a systematic review of effectiveness and complications. Pain 108(1–2), 137–147 (2004)

    Article  Google Scholar 

  129. van den Brand, R., Heutschi, J., Barraud, Q.: Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science (2012)

    Google Scholar 

  130. Varejão, A.S.P., Filipe, V.V.M., Varejao, A., Filipe, V.V.M.: Contribution of cutaneous inputs from the hindpaw to the control of locomotion in rats. Behav. Brain Res. 176(2), 193–201 (2007)

    Article  Google Scholar 

  131. Waltz, J.M., Andreesen, W.H., Hunt, D.P.: Spinal cord stimulation and motor disorders. Pacing Clin. Electrophysiol. 10, 180–204 (1987)

    Article  Google Scholar 

  132. Ward, A.B.: Spasticity treatment with botulinum toxins. J. Neural Transm. (Vienna, Austria, 1996) 115(4), 607–616 (2008)

    Google Scholar 

  133. Wenger, N., Moraud, E.M., Raspopovic, S., Bonizzato, M., DiGiovanna, J., Musienko, P., Morari, M., Micera, S., Courtine, G.: Closed-loop neuromodulation of spinal sensorimotor circuits controls refined locomotion after complete spinal cord injury. Sci. Transl. Med. 6(255), 255ra133–255ra133 (2014)

    Google Scholar 

  134. Wernig, A.: Long-term body-weight supported treadmill training and subsequent follow-up in persons with chronic SCI: effects on functional walking ability and measures of subjective well-being. Spinal Cord 44(4), 265–266; author reply 267–268 (2006)

    Google Scholar 

  135. Wernig, A., Nanassy, A., Müller, S.: Maintenance of locomotor abilities following Laufband(treadmill) therapy in para- and tetraplegic persons: follow-up studies. Spinal Cord (1998)

    Google Scholar 

  136. Wolpaw, J.R.: Spinal cord plasticity in acquisition and maintenance of motor skills. Acta Physiol. 189(2), 155–169 (2007)

    Article  Google Scholar 

  137. Wolpaw, J.R.: What can the spinal cord teach us about learning and memory? Neuroscientist 16(5), 532–549 (2010)

    Article  Google Scholar 

  138. Wolpaw, J.R.: Harnessing neuroplasticity for clinical applications. Brain 135(Pt 4), e215; author reply e216 (2012)

    Google Scholar 

  139. Wolpaw, J.R., Herchenroder, P.A.: Operant conditioning of H-reflex in freely moving monkeys. J. Neurosci. Methods 31(2), 145–152 (1990)

    Google Scholar 

  140. Wolpaw, J.R., Kieffer, V.A., Seegal, R.F., Braitman, D.J., Sanders, M.G.: Adaptive plasticity in the spinal stretch reflex. Brain Res. 267(1), 196–200 (1983)

    Google Scholar 

  141. Wolpaw, J.R., Lee, C.L., Calaitges, J.G.: Operant conditioning of primate triceps surae H-reflex produces reflex asymmetry. Exp. Brain Res. 75, 35–39 (1989)

    Article  Google Scholar 

  142. Wolpaw, J.R., O’Keefe, J.A.: Adaptive plasticity in the primate spinal stretch reflex: evidence for a two-phase process. J. Neurosci: Official J. Soc. Neurosci. 4(11), 2718–2724 (1984)

    Google Scholar 

  143. Wolpaw, J.R., Tennissen, A.M.: Activity-dependent spinal cord plasticity in health and disease. Ann. Rev. Neurosci. 24, 807–843 (2001a)

    Google Scholar 

  144. Wolpaw, J.R., Tennissen, A.M.: Activity-dependent spinal cord plasticity in health and disease. Ann. Rev. Neurosci. 24, 807–843 (2001b)

    Google Scholar 

  145. Woolf, C.J.: Central sensitization: implications for the diagnosis and treatment of pain (2011)

    Google Scholar 

  146. Zehr, E.P., Komiyama, T., Stein, R.B.: Cutaneous reflexes during human gait: electromyographic and kinematic responses to electrical stimulation. J. Neurophysiol. 77(6), 3311–3325 (1997)

    Google Scholar 

  147. Zehr, E.P., Stein, R.B., Komiyama, T.: Function of sural nerve reflexes during human walking. J. Physiol. 507(Pt 1), 305–314

    Google Scholar 

  148. Zimmermann, J.B., Seki, K., Jackson, A.: Reanimating the arm and hand with intraspinal microstimulation. J. Neural Eng. 8(5), 054001 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Jonathan R. Wolpaw, Dr. Elizabeth Winter Wolpaw and Dr. Natalie Mrachacz-Kersting for their invaluable help and important contribute in the writing of the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Piazza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Piazza, S., Ibáñez, J. (2016). Spinal Cord Plasticity and Neuromodulation After SCI. In: Pons, J., Raya, R., González, J. (eds) Emerging Therapies in Neurorehabilitation II. Biosystems & Biorobotics, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-24901-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24901-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24899-8

  • Online ISBN: 978-3-319-24901-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics