Skip to main content

Challenges in Neurorehabilitation and Neural Engineering

  • Chapter
  • First Online:
Book cover Emerging Therapies in Neurorehabilitation II

Abstract

Great progress has been achieved in the last few years in Neurorehabilitation and Neural Engineering. Thanks to the parallel development of medical research, the chances to survive a neural injury are growing, so it is necessary to develop technologies that can be used both for rehabilitation and to improve daily activities and social life. New robotic and prosthetic devices and technologies such as Functional Electrical Stimulation, Brain-Computer Interfaces and Virtual Reality are slowly becoming part of clinical rehabilitation setting, but they are far from being part of everyday life for the patients. As technology improves, expectations keep rising and new problems emerge: from cost reduction to the diffusion in the medical environment, from the enlargement of the number of patients who may benefit from these technologies to transferring rehabilitation to the patient’s home. All these requests lead to great challenges that researchers have to face to enhance their contribution towards the improvement of rehabilitation and life conditions of patients with neural impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akay, M.: Handbook of Neural Engineering, vol. 21. Wiley, New York (2007)

    Google Scholar 

  2. Anderson, K.D.: Targeting recovery: priorities of the spinal cord-injured population. J. Neurotrauma 21(10), 1371–1383 (2004)

    Article  Google Scholar 

  3. Bandara, D., Gopura, R., Hemapala, K., Kiguchi, K.: Upper extremity prosthetics: current status, challenges and future directions. In: Proceedings of the Seventeenth International Symposium Artificial Life Robot, pp. 875–880 (2012)

    Google Scholar 

  4. Barnes, C., W.H. Organization, et al.: Rethinking care from the perspective of disabled people: conference report and recommendations (2001)

    Google Scholar 

  5. Berger, T.W., Hampson, R.E., Song, D., Goonawardena, A., Marmarelis, V.Z., Deadwyler, S.A.: A cortical neural prosthesis for restoring and enhancing memory. J. Neural Eng. 8(4), 046017 (2011)

    Article  Google Scholar 

  6. Burdea, G.: Keynote address: virtual rehabilitation-benefits and challenges. In: 1st International Workshop on Virtual Reality Rehabilitation (Mental Health, Neurological, Physical, Vocational) VRMHR, pp. 1–11. sn (2002)

    Google Scholar 

  7. Carmena, J.M., Lebedev, M.A., Crist, R.E., O’Doherty, J.E., Santucci, D.M., Dimitrov, D.F., Patil, P.G., Henriquez, C.S., Nicolelis, M.A.: Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biol. 1(2), e42 (2003)

    Article  Google Scholar 

  8. Chen, C.C., Bode, R.K.: Factors influencing therapists’ decision-making in the acceptance of new technology devices in stroke rehabilitation. Am. J. Phys. Med. Rehabil. 90(5), 415–425 (2011)

    Article  Google Scholar 

  9. Colomer, C., Baldovi, A., Torrome, S., Navarro, M., Moliner, B., Ferri, J., Noe, E.: Efficacy of armeo\(\textregistered \) spring during the chronic phase of stroke. Study in mild to moderate cases of hemiparesis. Neurología (English Edn). 28(5):261–267 (2013)

    Google Scholar 

  10. Coote, S., Murphy, B., Harwin, W., Stokes, E.: The effect of the gentle/s robot-mediated therapy system on arm function after stroke. Clin. Rehabil. 22(5), 395–405 (2008)

    Article  Google Scholar 

  11. Díaz, I., Gil, J.J., Sánchez, E.: Lower-limb robotic rehabilitation: literature review and challenges. J. Rob. 2011 (2011)

    Google Scholar 

  12. Dietz, V., Nef, T., Rymer, W.: Neurorehabilitation Technology. Springer, London (2012)

    Google Scholar 

  13. Dietz, V., Fouad, K.: Restoration of sensorimotor functions after spinal cord injury. Brain 137(3), 654–667 (2014)

    Article  Google Scholar 

  14. Dijkers, M., deBear, P., Erlandson, R., Kristy, K., Geer, D., Nichols, A.: Patient and staff acceptance of robotic technology in occupational therapy: a pilot study. J. Rehabil. Res. Dev. 28(2), 33–34 (1991)

    Google Scholar 

  15. Duncan, P.W., Sullivan, K.J., Behrman, A.L., Azen, S.P., Wu, S.S., Nadeau, S.E., Dobkin, B.H., Rose, D.K., Tilson, J.K., Cen, S., et al.: Body-weight-supported treadmill rehabilitation after stroke. N. Engl. J. Med. 364(21), 2026–2036 (2011)

    Article  Google Scholar 

  16. Durand, D.M.: What is neural engineering? J. Neural Eng. 4(4) (2007)

    Google Scholar 

  17. Fact sheet 352: World Health Organization. http://www.who.int/mediacentre/factsheets/fs352/en/ (2013). Accessed Sept 2013

  18. Fact sheet 384: World Health Organization. http://www.who.int/mediacentre/factsheets/fs384/en/ (2013). Accessed Nov 2013

  19. Farina, D., Jensen, W., Akay, M.: Introduction to Neural Engineering for Motor Rehabilitation, vol. 40. Wiley (2013)

    Google Scholar 

  20. Fasoli, S.E., Krebs, H.I., Stein, J., Frontera, W.R., Hogan, N.: Effects of robotic therapy on motor impairment and recovery in chronic stroke. Arch. Phys. Med. Rehabil. 84(4), 477–482 (2003)

    Article  Google Scholar 

  21. Felicia, P.: Handbook of Research on Improving Learning and Motivation Through Educational Games: Multidisciplinary Approaches. IGI Global (2011)

    Google Scholar 

  22. Fouad, K., Krajacic, A., Tetzlaff, W.: Spinal cord injury and plasticity: opportunities and challenges. Brain Res. Bull. 84(4), 337–342 (2011)

    Article  Google Scholar 

  23. Gleissner, U., Sassen, R., Schramm, J., Elger, C., Helmstaedter, C.: Greater functional recovery after temporal lobe epilepsy surgery in children. Brain 128(12), 2822–2829 (2005)

    Article  Google Scholar 

  24. Grill, W.M., Norman, S.E., Bellamkonda, R.V.: Implanted neural interfaces: biochallenges and engineered solutions. Annu. Rev. Biomed. Eng. 11, 1–24 (2009)

    Article  Google Scholar 

  25. Harwin, W.S., Patton, J.L., Edgerton, V.R.: Challenges and opportunities for robot-mediated neurorehabilitation. Proc. IEEE 94(9), 1717–1726 (2006)

    Article  Google Scholar 

  26. He, B.: Neural Engineering. Springer (2005)

    Google Scholar 

  27. He. B.: Neural Engineering. Springer (2013)

    Google Scholar 

  28. Henderson, A., Korner-Bitensky, N., Levin, M.: Virtual reality in stroke rehabilitation: a systematic review of its effectiveness for upper limb motor recovery. Top. Stroke Rehabil. 14(2), 52–61 (2007)

    Article  Google Scholar 

  29. Hesse, S., Schulte-Tigges, G., Konrad, M., Bardeleben, A., Werner, C.: Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch. Phys. Med. Rehabil. 84(6), 915–920 (2003)

    Article  Google Scholar 

  30. Hidler, J., Nichols, D., Pelliccio, M., Brady, K., Campbell, D.D., Kahn, J.H., Hornby, T.G.: Multicenter randomized clinical trial evaluating the effectiveness of the lokomat in subacute stroke. Neurorehabil. Neural Repair 23(1), 5–13 (2009)

    Article  Google Scholar 

  31. Hornby, T.G., Campbell, D.D., Kahn, J.H., Demott, T., Moore, J.L., Roth, H.R.: Enhanced gait-related improvements after therapist-versus robotic-assisted locomotor training in subjects with chronic stroke a randomized controlled study. Stroke 39(6), 1786–1792 (2008)

    Article  Google Scholar 

  32. http://www.merriam-webster.com/dictionary/plasticity

  33. http://www.oxforddictionaries.com

  34. http://www.who.int/topics/rehabilitation/en/

  35. Husemann, B., Müller, F., Krewer, C., Heller, S., Koenig, E.: Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke a randomized controlled pilot study. Stroke 38(2), 349–354 (2007)

    Article  Google Scholar 

  36. Katz, B.F.: Neuroengineering the Future: Virtual Minds and the Creation of Immortality. Jones & Bartlett Publishers (2009)

    Google Scholar 

  37. Krebs, H., Hogan, N., Volpe, B., Aisen, M., Edelstein, L., Diels, C.: Overview of clinical trials with mit-manus: a robot-aided neuro-rehabilitation facility. Technol. Health Care 7(6), 419–423 (1999)

    Google Scholar 

  38. Laver, K., George, S., Thomas, S., Deutsch, J.E., Crotty, M.: Virtual reality for stroke rehabilitation. Stroke 43(2), e20–e21 (2012)

    Article  Google Scholar 

  39. Lebedev, M.A., Carmena, J.M., O’Doherty, J.E., Zacksenhouse, M., Henriquez, C.S., Principe, J.C., Nicolelis, M.A.: Cortical ensemble adaptation to represent velocity of an artificial actuator controlled by a brain-machine interface. J. Neurosci. 25(19), 4681–4693 (2005)

    Google Scholar 

  40. Lebedev, M.A., Nicolelis, M.A.: Brain–machine interfaces: past, present and future. Trends Neurosci. 29(9), 536–546 (2006)

    Article  Google Scholar 

  41. Leeb, R., Keinrath, C., Friedman, D., Guger, C., Scherer, R., Neuper, C., Garau, M., Antley, A., Steed, A., Slater, M., et al.: Walking by thinking: the brainwaves are crucial, not the muscles!. Presence: Teleoperators Virtual Environ. 15(5), 500–514 (2006)

    Article  Google Scholar 

  42. Leeb, R., Lee, F., Keinrath, C., Scherer, R., Bischof, H., Pfurtscheller, G.: Brain–computer communication: motivation, aim, and impact of exploring a virtual apartment. IEEE Trans. Neural Syst. Rehabil. Eng. 15(4), 473–482 (2007)

    Article  Google Scholar 

  43. Lo, A.C.: Clinical designs of recent robot rehabilitation trials. Am. J. Phys. Med. Rehabil. 91(11), S204–S216 (2012)

    Article  Google Scholar 

  44. Lum, P.S., Burgar, C.G, Van der Loos, M., Shor, P., Majmundar, M., Yap, R.: The mime robotic system for upper-limb neuro-rehabilitation: results from a clinical trial in subacute stroke. In: 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005. pp. 511–514. IEEE (2005)

    Google Scholar 

  45. Lum, P.S., Burgar, C.G., Kenney, D.E., Van der Loos, H.M.: Quantification of force abnormalities during passive and active-assisted upper-limb reaching movements in post-stroke hemiparesis. IEEE Trans. Biomed. Eng. 46(6), 652–662 (1999)

    Article  Google Scholar 

  46. Lum, P.S., Burgar, C.G., Shor, P.C., Majmundar, M., Van der Loos, M.: Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after strokes. Arch. Phys. Med. Rehabil. 83(7), 952–959 (2002)

    Article  Google Scholar 

  47. Lum, P.S., Burgar, C.G., Van der Loos, M., Shor, P.C., Majmundar, M., Yap, R.: Mime robotic device for upper-limb neurorehabilitation in subacute stroke subjects: a follow-up study. J. Rehabil. Res. Devel. 43(5), 631 (2006)

    Article  Google Scholar 

  48. Lyons, G., Leane, G., Clarke-Moloney, M., O’brien, J., Grace, P.: An investigation of the effect of electrode size and electrode location on comfort during stimulation of the gastrocnemius muscle. Med. Eng. Phys 26(10), 873–878 (2004)

    Article  Google Scholar 

  49. MacClellan, L.R., Bradham, D.D., Whitall, J., Volpe, B., Wilson, P.D., Ohlhoff, J., Meister, C., Hogan, N., Krebs, H.I., Bever, C.T.: Robotic upper-limb neurorehabilitation in chronic stroke patients. J. Rehabil. Res. Dev. 42(6), 717 (2005)

    Article  Google Scholar 

  50. Mak, J.N., Wolpaw, J.R.: Clinical applications of brain–computer interfaces: current state and future prospects. IEEE Rev. Biomed. Eng. 2, 187–199 (2009)

    Article  Google Scholar 

  51. Mayr, A., Kofler, M., Quirbach, E., Matzak, H., Fröhlich, K., Saltuari, L.: Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the lokomat gait orthosis. NeuroRehabil. Neural Repair 21(4), 307–314 (2007)

    Article  Google Scholar 

  52. Millán, J.D.R., Rupp, R., Müller-Putz, G.R., Murray-Smith, R., Giugliemma, C., Tangermann, M., Vidaurre, C., Cincotti, F., Kübler, A., Leeb, R., et al.: Combining brain–computer interfaces and assistive technologies: state-of-the-art and challenges. Front. Neurosci. 4 (2010)

    Google Scholar 

  53. Moreno, J.C., Barroso, F., Farina, D., Gizzi, L., Santos, C., Molinari, M., Pons, J.L., et al.: Effects of robotic guidance on the coordination of locomotion. J NeuroEng. Rehabil. 10(1), 79 (2013)

    Article  Google Scholar 

  54. Nazarpour, K., Cipriani, C., Farina, D., Kuiken, T.: Guest editorial. IEEE Trans. Neural Syst. Rehabil. Eng. 22(4), 711–715 (2014)

    Article  Google Scholar 

  55. Pennycott, A., Wyss, D., Vallery, H., Klamroth-Marganska, V., Riener, R.: Towards more effective robotic gait training for stroke rehabilitation: a review. J. NeuroEng. Rehabil. 9, 65 (2012)

    Article  Google Scholar 

  56. Pohl, M., Werner, C., Holzgraefe, M., Kroczek, G., Wingendorf, I., Hoölig, G., Koch, R., Hesse, S.: Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living after stroke: a single-blind, randomized multicentre trial (deutsche gangtrainerstudie, degas). Clin. Rehabil. 21(1), 17–27 (2007)

    Google Scholar 

  57. Pons, J.L., Torricelli, D.: Emerging Therapies in Neurorehabilitation. Springer (2013)

    Google Scholar 

  58. Reinkensmeyer, D.J., Dewald, J.P., Rymer, W.Z.: Guidance-based quantification of arm impairment following brain injury: a pilot study. IEEE Trans. Rehabil. Eng. 7(1), 1–11 (1999)

    Article  Google Scholar 

  59. Reinkensmeyer, D.J., Schmit, B.D., Rymer, W.Z.: Assessment of active and passive restraint during guided reaching after chronic brain injury. Ann. Biomed. Eng. 27(6), 805–814 (1999)

    Article  Google Scholar 

  60. Reinkensmeyer, D.J., Kahn, L.E., Averbuch, M., McKenna-Cole, A., Schmit, B.D., Rymer, W.Z.: Understanding and treating arm movement impairment after chronic brain injury: progress with the arm guide. J. Rehabil. Res. Dev. 37(6), 653–662 (2000)

    Google Scholar 

  61. Reinkensmeyer, D.J., Boninger, M.L.: Technologies and combination therapies for enhancing movement training for people with a disability. J. NeuroEng. Rehabil. 9, 17 (2012)

    Article  Google Scholar 

  62. Ron-Angevin, R., Díaz-Estrella, A., Velasco-Alvarez, F.: A two-class brain computer interface to freely navigate through virtual worlds. Biomed. Tech. 54(3), 126–133 (2009)

    Article  Google Scholar 

  63. Selzer, M., Clarke, S., Cohen, L., Kwakkel, G., Miller, R.: Textbook of Neural Repair and Rehabilitation—Medical Neurorehabilitation, vol. 2. Cambridge University Press (2006)

    Google Scholar 

  64. Selzer, M., Clarke, S., Cohen, L., Kwakkel, G., Miller, R.: Textbook of Neural Repair and Rehabilitation—Neural Repair and Plasticity, vol. 1. Cambridge University Press (2006)

    Google Scholar 

  65. Song, D., Harway, M., Marmarelis, V.Z., Hampson, R.E., Deadwyler, S.A., Berger, T.W.: Extraction and restoration of hippocampal spatial memories with non-linear dynamical modeling. Front. Syst. Neurosci. 8 (2014)

    Google Scholar 

  66. Tong, R.K., Ng, M.F., Li, L.S.: Effectiveness of gait training using an electromechanical gait trainer, with and without functional electric stimulation, in subacute stroke: a randomized controlled trial. Arch. Phys. Med. Rehabil. 87(10), 1298–1304 (2006)

    Article  Google Scholar 

  67. Turchetti, G., Vitiello, N., Romiti, S., Geisler, E., Micera, S.: Why effectiveness of robot-mediated neuro-rehabilitation does not necessarily influence its adoption? IEEE Rev. Biomed. Eng. 7, 143–153 (2013)

    Article  Google Scholar 

  68. Van den Broek, M.: Why does neurorehabilitation fail? J. Head Trauma Rehabil. 20(5), 464–473 (2005)

    Article  Google Scholar 

  69. Volpe, B., Krebs, H., Hogan, N., Edelstein, L., Diels, C., Aisen, M.: A novel approach to stroke rehabilitation robot-aided sensorimotor stimulation. Neurology 54(10), 1938–1944 (2000)

    Article  Google Scholar 

  70. Werner, C., Von Frankenberg, S., Treig, T., Konrad, M., Hesse, S.: Treadmill training with partial body weight support and an electromechanical gait trainer for restoration of gait in subacute stroke patients a randomized crossover study. Stroke 33(12), 2895–2901 (2002)

    Article  Google Scholar 

  71. WHO: How to Use the ICF: A Practical Manual for Using the International Classification of Functioning, Disability and Health (ICF). World Health Organization (2013)

    Google Scholar 

  72. WHO: International Classification of Functioning, Disability and Health (ICF). World Health Organization (2001)

    Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to the Professors of the Summer School on Neurorehabilitation 2014 who have taken the time to answer the questions about the topics of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Caramenti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Caramenti, M., Bartenbach, V., Gasperotti, L., Oliveira da Fonseca, L., Berger, T.W., Pons, J.L. (2016). Challenges in Neurorehabilitation and Neural Engineering. In: Pons, J., Raya, R., González, J. (eds) Emerging Therapies in Neurorehabilitation II. Biosystems & Biorobotics, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-24901-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24901-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24899-8

  • Online ISBN: 978-3-319-24901-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics