Skip to main content

Experimental Spatiotemporal Chaotic Textures in a Liquid Crystal Light Valve with Optical Feedback

  • Conference paper
  • First Online:
  • 1065 Accesses

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 173))

Abstract

Macroscopic systems subjected to external forcing exhibit complex spatiotemporal behaviors as result of dissipative self-organization. Based on a nematic liquid crystal layer with spatially modulated input beam and optical feedback, we set up a two-dimensional pattern forming system which exhibits a transition from stationary to spatiotemporal chaotic patterns. Using an adequate projection of spatiotemporal diagrams, we determine the largest Lyapunov exponent. This exponent allows us to characterize the transition presented by this system. This exponent and Fourier transforms lead to a reconciliation of experimental observations of spatiotemporal complexity and theoretical developments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. P. Ball, The Self-Made Tapestry: Pattern Formation in Nature (Oxford University Press, New York, 1999)

    MATH  Google Scholar 

  2. G. Nicolis, I. Prigogine, Self-Organization in Non Equilibrium Systems (Wiley, New York, 1977)

    MATH  Google Scholar 

  3. L.M. Pismen, Patterns and Interfaces in Dissipative Dynamics (Springer Series in Synergetics, Berlin, 2006)

    MATH  Google Scholar 

  4. M.C. Cross, P.C. Hohenberg, Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993)

    Article  ADS  Google Scholar 

  5. M. Cross, H. Greenside, Pattern Formation and Dynamics in Nonequilibrium Systems (Cambridge University Press, New York, 2009)

    Book  MATH  Google Scholar 

  6. M. Tlidi, K. Staliunas, K. Panajotov, A.G. Vladimirov, M.G. Clerc (2014) Localized structures in dissipative media: from optics to plant ecology. Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 372, 20140101 (2027)

    Google Scholar 

  7. G. Nicolis, Introduction to Nonlinear Science (Cambridge University press, Cambridge, 1995)

    Google Scholar 

  8. P. Coullet, J. Lega, Defect-mediated turbulence in wave patterns, Europhys. Lett. 7, 511–516 (1988). P. Coullet, L. Gil, J. Lega, Defect-mediated turbulence, Phys. Rev. Lett. 62, 1619–1622 (1989). A form of turbulence associated with defects, Physica 37 D, 91–103(1989)

    Google Scholar 

  9. G. Goren, J.P. Eckmann, I. Procaccia, Scenario for the onset of space-time chaos. Phys. Rev. E 57, 4106–4134 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  10. W. Decker, W. Pesch, A. Weber, Spiral defect chaos in Rayleigh-Benard convection. Phys. Rev. Lett. 73, 648–651 (1994); B. Echebarria, H. Riecke, Defect chaos of oscillating hexagons in rotating convection, Phys. Rev. Lett. 84, 4838–4841 (2000); K.E. Daniels, E. Bodenschatz, Defect turbulence in inclined layer convection, Phys. Rev. Lett. 88, 034501(2002)

    Google Scholar 

  11. M. Miranda, J. Burguete, Experimentally observed route to spatiotemporal chaos in an extended one-dimensional array of convective oscillators. Phys. Rev. E 79, 046201 (2009)

    Article  ADS  Google Scholar 

  12. P. Brunet, l. Limat, Defects and spatiotemporal disorder in a pattern of falling liquid columns. Phys. Rev. E 70, 046207 (2004)

    Google Scholar 

  13. Q. Ouyang, J.M. Flesselles, Transition from spirals to defect turbulence driven by a convective instability. Nature (London) 379, 143–146 (1996)

    Article  ADS  Google Scholar 

  14. A. Garfinkel, M.L. Spano, W.L. Ditto, J.N. Weiss, Controlling cardiac chaos. Science 257, 1230–1235 (1992)

    Article  ADS  Google Scholar 

  15. S.Q. Zhou, G. Ahlers, Spatiotemporal chaos in electroconvection of a homeotropically aligned nematic liquid crystal. Phys. Rev. E 74, 046212 (2006)

    Article  ADS  Google Scholar 

  16. S.J. Moon, M.D. Shattuck, C. Bizon, D.I. Goldman, J.B. Swift, H.L. Swinney, Phase bubbles and spatiotemporal chaos in granular patterns. Phys. Rev. E 65, 011301 (2001)

    Article  ADS  Google Scholar 

  17. G. Huyet, J.R. Tredicce, Spatio-temporal chaos in the transverse section of lasers. Physica. D 96, 209–214 (1996)

    Article  ADS  Google Scholar 

  18. N. Verschueren, U. Bortolozzo, M.G. Clerc, S. Residori, Spatiotemporal chaotic localized state in liquid crystal light valve experiments with optical feedback. Phys. Rev. Lett. 110, 104101 (2013); Phil. Trans. R. Soc. A. 372, 20140011 (2014)

    Google Scholar 

  19. P. Manneville, Dissipative Structures and Weak Turbulence (Academic Press, San Diego, 1990)

    MATH  Google Scholar 

  20. S. Residori, Patterns, fronts and structures in a liquid-crystal-light-valve with optical feedback. Phys. Rep. 416, 201–272 (2005)

    Article  ADS  Google Scholar 

  21. Further details can be found on the web site of the manufacturer : http://www.niopik.ru

  22. P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, 2nd edn. (Clarendon Press, Oxford, 1993)

    Google Scholar 

  23. M.G. Clerc, C. Falcon, M.A. Garcia-Nustes, V. Odent, I. Ortega, Emergence of spatiotemporal dislocation chains in drifting patterns. CHAOS 24, 023133 (2014)

    Article  ADS  MATH  Google Scholar 

  24. E. Louvergneaux, Pattern-dislocation-type dynamical instability in 1D optical feedback Kerr Media with Gaussian Transverse pumping. Phys. Rev. Lett. 87, 244501 (2001)

    Article  ADS  Google Scholar 

  25. S. Bielawski, C. Szwaj, C. Bruni, D. Garzella, G.L. Orlandi, M.E. Couprie, Advection-induced spectrotemporal defects in a free-electron laser. Phys. Rev. Lett. 95, 034801 (2005)

    Article  ADS  Google Scholar 

  26. G. Nicolis, Introduction to Nonlinear Science (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  27. M.G. Clerc, N. Verschueren, Quasiperiodicity route to spatiotemporal chaos in one-dimensional pattern-forming systems. Phys. Rev. E. 88, 052916 (2013)

    Article  ADS  Google Scholar 

  28. K.E. Daniels, E. Bodenschatz, Defect turbulence in inclined layer convection. Phys. Rev. Lett. 88, 034501 (2002)

    Article  ADS  Google Scholar 

  29. Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer, New York, 1984)

    Book  MATH  Google Scholar 

  30. E. Ott, Chaos in Dynamical Systems, 2nd edn. (Cambridge University Press, Cambridge, 2002)

    Book  MATH  Google Scholar 

  31. H. Abarbanel, Analysis of Observed Chaotic Data (Springer, New York, 1996)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

M.G.C. acknowledges the support of FONDECYT N\(^{\circ } 1150507\). M.W. acknowledges the support of FONDECYT N\(^{\circ } 3140387\).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Wilson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Clerc, M.G., González-Cortés, G., Wilson, M. (2016). Experimental Spatiotemporal Chaotic Textures in a Liquid Crystal Light Valve with Optical Feedback. In: Tlidi, M., Clerc, M. (eds) Nonlinear Dynamics: Materials, Theory and Experiments. Springer Proceedings in Physics, vol 173. Springer, Cham. https://doi.org/10.1007/978-3-319-24871-4_8

Download citation

Publish with us

Policies and ethics