Skip to main content

Spontaneous Symmetry Breaking in Nonlinear Systems: An Overview and a Simple Model

  • Conference paper
  • First Online:
Nonlinear Dynamics: Materials, Theory and Experiments

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 173))

Abstract

The paper combines two topics belonging to the general theme of the spontaneous symmetry breaking (SSB) in systems including two basic competing ingredients: the self-focusing cubic nonlinearity and a double-well-potential (DWP) structure. Such systems find diverse physical realizations, chiefly in optical waveguides, made of a nonlinear material and featuring a transverse DWP structure, and in models of atomic BEC with attractive inter-atomic interactions, loaded into a pair of symmetric potential wells coupled by tunneling across the separating barrier. With the increase of the nonlinearity strength, the SSB occurs at a critical value of the strength. The first part of the paper offers a brief overview of the topic. The second part presents a model which is designed as the simplest one capable to produce the SSB phenomenology in the one-dimensional geometry. The model is based on the DWP built as an infinitely deep potential box, which is split into two wells by a delta-functional barrier at the central point. Approximate analytical predictions for the SSB are produced for two limit cases: strong (deep) or weak (shallow) splitting of the potential box by the central barrier. Critical values of the strength of the nonlinearity at the SSB point, represented by the norm of the stationary wave field, are found in both cases (the critical strength is small in the former case, and large in the latter one). For the intermediate case, a less accurate variational approximation (VA) is developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Landau, E.M. Lifshitz, Quantum Mechanics (Nauka Publishers, Moscow, 1974)

    MATH  Google Scholar 

  2. S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 80, 1215 (2008); H.T.C. Stoof, K.B. Gubbels, D.B.M. Dickrsheid, Ultracold Quantum Fields (Springer, Dordrecht, 2009)

    Google Scholar 

  3. Y.S. Kivshar, G.P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic Press, San Diego, 2003)

    Google Scholar 

  4. E.B. Davies, Symmetry breaking in a non-linear Schrödinger equation. Commun. Math. Phys. 64, 191–210 (1979)

    Article  ADS  MATH  Google Scholar 

  5. J.C. Eilbeck, P.S. Lomdahl, A.C. Scott, The discrete self-trapping equation. Physica D 16, 318–338 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. A.W. Snyder, D.J. Mitchell, L. Poladian, D.R. Rowland, Y. Chen, Physics of nonlinear fiber couplers. J. Opt. Soc. Am. B 8, 2101–2118 (1991)

    Google Scholar 

  7. G. Iooss, D.D. Joseph, Elementary Stability Bifurcation Theory (Springer, New York, 1980)

    Book  MATH  Google Scholar 

  8. E.M. Wright, G.I. Stegeman, S. Wabnitz, Solitary-wave decay and symmetry-breaking instabilities in two-mode fibers. Phys. Rev. A 40, 4455–4466 (1989)

    Article  ADS  Google Scholar 

  9. C. Paré, M. Fłorjańczyk, Approximate model of soliton dynamics in all-optical couplers. Phys. Rev. A 41, 6287–6295 (1990)

    Google Scholar 

  10. A.I. Maimistov, Propagation of a light pulse in nonlinear tunnel-coupled optical waveguides. Kvant. Elektron. 18, 758–761 [Sov. J. Quantum Electron. 21, 687–690 (1991)]

    Google Scholar 

  11. N. Akhmediev, A. Ankiewicz, Novel soliton states and bifurcation phenomena in nonlinear fiber couplers. Phys. Rev. Lett. 70, 2395–2398 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. B.A. Malomed, I. Skinner, P.L. Chu, G.D. Peng, Symmetric and asymmetric solitons in twin-core nonlinear optical fibers. Phys. Rev. E 53, 4084 (1996)

    Article  ADS  Google Scholar 

  13. G.L. Alfimov, P.G. Kevrekidis, V.V. Konotop, M. Salerno, Wannier functions analysis of the nonlinear Schrödinger equation with a periodic potential. Phys. Rev. E 66, 046608 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  14. G.J. Milburn, J. Corney, E.M. Wright, D.F. Walls, Quantum dynamics of an atomic Bose-Einstein condensate in a double-well potential. Phys. Rev. A 55, 4318–4324 (1997)

    Article  ADS  Google Scholar 

  15. A. Smerzi, S. Fantoni, S. Giovanazzi, S.R. Shenoy, Quantum coherent atomic tunneling between two trapped Bose-Einstein condensates. Phys. Rev. Lett. 79, 4950–4953 (1997)

    Article  ADS  Google Scholar 

  16. V.M. Pérez-García, H. Michinel, H. Herrero, Bose-Einstein solitons in highly asymmetric traps. Phys. Rev. A 57, 3837–3842 (1998)

    Article  ADS  Google Scholar 

  17. M. Matuszewski, B.A. Malomed, M. Trippenbach, Spontaneous symmetry breaking of solitons trapped in a double-channel potential. Phys. Rev. A 75, 063621 (2007)

    Article  ADS  Google Scholar 

  18. G. Schön, A.D. Zaikin, Quantum coherent effects, phase transitions, and the dissipative dynamics of ultra small tunnel junctions. Phys. Rep. 198, 237–412 (1990)

    Article  ADS  Google Scholar 

  19. A.V. Ustinov, Solitons in Josephson junctions. Physica D 123, 315–329 (1998)

    Article  ADS  Google Scholar 

  20. S. Raghavan, A. Smerzi, S. Fantoni, S.R. Shenoy, Coherent oscillations between two weakly coupled Bose-Einstein condensates: Josephson effects, \(\pi \) oscillations, and macroscopic quantum self-trapping. Phys. Rev. A 59, 620–633 (1999)

    Article  ADS  Google Scholar 

  21. M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, M.K. Oberthaler, Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction. Phys. Rev. Lett. 95, 010402 (2005)

    Article  ADS  Google Scholar 

  22. P.G. Kevrekidis, Z. Chen, B.A. Malomed, D.J. Frantzeskakis, M.I. Weinstein, Spontaneous symmetry breaking in photonic lattices: theory and experiment. Phys. Lett. A 340, 275–280 (2005)

    Article  ADS  MATH  Google Scholar 

  23. T. Heil, I. Fischer,W. Elsässer, J. Mulet, C.R. Mirasso, Chaos synchronization and spontaneous symmetry-breaking in symmetrically delay-coupled semiconductor lasers. Phys. Rev. Lett. 86, 795–798 (2000)

    Google Scholar 

  24. P. Hamel, S. Haddadi, F. Raineri, P. Monnier, G. Beaudoin, I. Sagnes, A. Levenson, A.M. Yacomotti, Spontaneous mirror-symmetry breaking in coupled photonic-crystal nanolasers. Nat. Photonics 9, 311–315 (2015)

    Article  ADS  Google Scholar 

  25. A. Sigler, B.A. Malomed, Solitary pulses in linearly coupled cubic-quintic Ginzburg-Landau equations. Physica D 212, 305–316 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. M. Liu, D.A. Powell, I.V. Shadrivov, M. Lapine, Y.S. Kivshar, Spontaneous chiral symmetry breaking in metamaterials. Nat. Commun. 5, 4441 (2014)

    ADS  Google Scholar 

  27. B.A. Malomed (ed.), Spontaneous Symmetry Breaking, Self-Trapping, and Josephson Oscillations (Springer, Berlin, 2013)

    Google Scholar 

  28. B.A. Malomed, Symmetry breaking in laser cavities. Nat. Photonics 9, 287–289 (2015)

    Article  ADS  Google Scholar 

  29. B.A. Malomed, Variational methods in nonlinear fiber optics and related fields. Prog. Opt. 43, 71–193 (2002)

    Article  Google Scholar 

  30. V.I. Karpman, V.V. Solov’ev, A perturbation approach to the 2-soliton systems. Physica D 3, 487–502 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. J.P. Gordon, Interaction forces among solitons in optical fibers. Opt. Lett. 8, 596–598 (1983)

    Article  ADS  Google Scholar 

  32. F.M. Mitschke, L.F. Mollenauer, Experimental observation of interaction forces between solitons in optical fibers. Opt. Lett. 12, 355–357 (1987)

    Article  ADS  Google Scholar 

  33. Y.S. Kivshar, B.A. Malomed, Dynamics of solitons in nearly integrable systems. Rev. Mod. Phys. 61, 763–915 (1989)

    Article  ADS  Google Scholar 

  34. B.A. Malomed, Potential of interaction between two- and three-dimensional solitons. Phys. Rev. E 58, 7928–7933 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris A. Malomed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Malomed, B.A. (2016). Spontaneous Symmetry Breaking in Nonlinear Systems: An Overview and a Simple Model. In: Tlidi, M., Clerc, M. (eds) Nonlinear Dynamics: Materials, Theory and Experiments. Springer Proceedings in Physics, vol 173. Springer, Cham. https://doi.org/10.1007/978-3-319-24871-4_7

Download citation

Publish with us

Policies and ethics