Skip to main content

Random Walk Model for Kink-Antikink Annihilation in a Fluctuating Environment

  • Conference paper
  • First Online:
Nonlinear Dynamics: Materials, Theory and Experiments

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 173))

  • 1031 Accesses

Abstract

In this report, the kink-antikink interaction, in one spatial dimension, is revised in the framework of a paradigmatic model for bistability (real Ginzburg-Landau equation). In particular, it is pointed out that, when it is taking into account the fluctuations, drastically changes the main features of the interaction. To wit, since the long distance interaction is exponentially weak, the kink-antikink movement is ruled by the fluctuations. A simple random walk model, that incorporates the pair self-annihilation, is proposed. We discussed the implications that, consider the fluctuations, has in the coarsening dynamics. That is, the coarsening law, for the growing of the domains in each stable state, changes from being logarithmic to becoming in the power law \(\sqrt{t}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Hubert, R. Scafer, Magnetic domains (Springer, Berlin, 1998)

    Google Scholar 

  2. A.J. Bray, Domain-growth scaling in systems with long-range interactions. Phys. Rev. E 47, 3191–3195 (1993)

    Article  ADS  Google Scholar 

  3. C.L. Emmott, A.J. Bray, Coarsening dynamics of a one-dimensional driven Cahn-Hilliard system. Phys. Rev. E 54, 4568–4575 (1996)

    Article  ADS  Google Scholar 

  4. A.J. Bray, Defect relaxation and coarsening exponents. Phys. Rev. E 58, 1508–1513 (1998)

    Article  ADS  Google Scholar 

  5. S.J. Watson, F. Otto, B.Y. Rubinstein, S.H. Davis, Coarsening dynamics of the convective Cahn-Hilliard equation. Physica D 178, 127–148 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. H. Calisto, M. Clerc, R. Rojas, E. Tirapegui, Bubbles Interactions in the Cahn-Hilliard Equation. Phys. Rev. Lett. 85, 3805–3808 (2000)

    Article  ADS  Google Scholar 

  7. A.A. Golovin, A.A. Nepomnyashchy, S.H. Davis, M.A. Zaks, Convective Cahn-Hilliard models: from coarsening to roughening. Phys. Rev. Lett. 86, 1550–1553 (2001)

    Article  ADS  Google Scholar 

  8. M. Argentina, M.G. Clerc, R. Soto, van der Waals-like transition in fluidized granular matter. Phys. Rev. Lett. 89, 044301 (2002)

    Article  ADS  MATH  Google Scholar 

  9. J. Swift, P.C. Hohenberg, Hydrodynamic fluctuations at the convective instability. Phys. Rev. A 15, 319 (1977)

    Article  ADS  Google Scholar 

  10. M. Bestehorn, H. Haken, Transient patterns of the convection instability: a model-calculation. Z. Phys. B 57, 329 (1984)

    Article  ADS  Google Scholar 

  11. M. Tlidi, P. Mandel, R. Lefever, Kinetics of localized pattern formation in optical systems. Phys. Rev. Lett. 81, 979–982 (1998)

    Article  ADS  Google Scholar 

  12. K. Kawasaki, Defect-phase dynamics for dissipative media with potential. Progr. Theory Phys. 80, 123–138 (1984)

    Article  ADS  Google Scholar 

  13. T. Funaki, The scaling limit for a stochastic PDE and the separation of phases. Probab. Theory Relat. Fields. 102, 221–288 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Contreras. M.G. Clerc, Internal noise and system size effects induce nondiffusive kink dynamics. Phys. Rev. E 91, 032922 (2015)

    Google Scholar 

  15. N.G. van Kampen, Stochastic processes in physics and chemistry (Elsevier, North-Holland, 1981)

    MATH  Google Scholar 

Download references

Acknowledgments

I would like to thank Prof. M.G. Clerc for fruitful discussions, and FONDECYT (Project N 1140128) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Escaff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Escaff, D. (2016). Random Walk Model for Kink-Antikink Annihilation in a Fluctuating Environment. In: Tlidi, M., Clerc, M. (eds) Nonlinear Dynamics: Materials, Theory and Experiments. Springer Proceedings in Physics, vol 173. Springer, Cham. https://doi.org/10.1007/978-3-319-24871-4_22

Download citation

Publish with us

Policies and ethics