Advertisement

Open-Loop Optimization Strategies for Additive Uncertainty

  • Basil Kouvaritakis
  • Mark Cannon
Chapter
Part of the Advanced Textbooks in Control and Signal Processing book series (C&SP)

Abstract

The essential components of the classical predictive control algorithms considered in Chap.  2 also underpin the design of algorithms for robust MPC. Guarantees of closed-loop properties such as stability and convergence rely on appropriately defined terminal control laws, terminalsets and cost functions. Likewise, to ensure that constraints can be met in the future, the initial plant state must belong to a suitable controllable set. However the design of these constituents and the analysis of their effects on the performance of MPC algorithms become more complex in the case where the system dynamics are subject to uncertainty. The main difficulty is that properties such as invariance, controlled invariance (including recursive feasibility) and monotonicity of the predicted cost must be guaranteed for all possible uncertainty realizations. In many cases this leads to computation which grows rapidly with the problem size and the prediction horizon.

References

  1. 1.
    I. Kolmanovsky, E.G. Gilbert, Theory and computation of disturbance invariant sets for discrete-time linear systems. Math. Probl. Eng. 4(4), 317–367 (1998)CrossRefzbMATHGoogle Scholar
  2. 2.
    D.P. Bertsekas, I.B. Rhodes, On the minimax reachability of target sets and target tubes. Automatica 7, 233–247 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    D.P. Bertsekas, Dynamic Programming and Optimal Control (Academic Press, New York, 1976)zbMATHGoogle Scholar
  4. 4.
    Y.I. Lee, B. Kouvaritakis, Constrained receding horizon predictive control for systems with disturbances. Int. J. Control 72(11), 1027–1032 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    J. Schuurmans, J.A. Rossiter, Robust predictive control using tight sets of predicted states. Control Theory Appl. IEE Proc. 147(1), 13–18 (2000)CrossRefGoogle Scholar
  6. 6.
    D.Q. Mayne, M.M. Seron, S.V. Raković, Robust model predictive control of constrained linear systems with bounded disturbances. Automatica 41(2), 219–224 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    S.V. Rakovic, E.C. Kerrigan, K.I. Kouramas, D.Q. Mayne, Invariant approximations of the minimal robust positively invariant set. IEEE Trans. Autom. Control 50(3), 406–410 (2005)MathSciNetCrossRefGoogle Scholar
  8. 8.
    M. Vidyasagar, Nonlinear Systems Analysis, 2nd edn. (Prentice Hall, Upper Saddle River, 1993)zbMATHGoogle Scholar
  9. 9.
    I. Yaesh, U. Shaked, Minimum \({\cal H}_\infty \)-norm regulation of linear discrete-time systems and its relation to linear quadratic discrete games. IEEE Trans. Autom. Control 35(9), 1061–1064 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    T. Başar, A dynamic games approach to controller design: disturbance rejection in discrete-time. IEEE Trans. Autom. Control 36(8), 936–952 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    J. von Neumann, O. Morgenstern, Theory of Games and Economic Behavior (Princeton University Press, Princeton, 1944)zbMATHGoogle Scholar
  12. 12.
    P.O.M. Scokaert, D.Q. Mayne, Min-max feedback model predictive control for constrained linear systems. IEEE Trans. Autom. Control 43(8), 1136–1142 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    G. Tadmor, Receding horizon revisited: an easy way to robustly stabilize an LTV system. Syst. Control Lett. 18(4), 285–294 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    S. Lall, K. Glover, A game theoretic approach to moving horizon control, in Advances in Model-Based Predictive Control, ed. by D.W. Clarke (Oxford University Press, Oxford, 1994), pp. 131–144Google Scholar
  15. 15.
    Y.I. Lee, B. Kouvaritakis, Receding horizon \({\cal H}_\infty \) predictive control for systems with input saturation. Control Theory Appl. IEE Proc. 147(2), 153–158 (2000)CrossRefGoogle Scholar
  16. 16.
    L. Magni, H. Nijmeijer, A.J. van der Schaft, A receding-horizon approach to the nonlinear \({\cal H}_\infty \) control problem. Automatica 37(3), 429–435 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    A.A. Stoorvogel, A.J.T.M. Weeren, The discrete-time Riccati equation related to the \(H_\infty \) control problem. IEEE Trans. Autom. Control 39(3), 686–691 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    R. Fletcher, Practical Methods of Optimization, 2nd edn. (Wiley, New York, 1987)zbMATHGoogle Scholar
  19. 19.
    S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge, 2004)CrossRefzbMATHGoogle Scholar
  20. 20.
    S.V. Raković, B. Kouvaritakis, R. Findeisen, M. Cannon, Homothetic tube model predictive control. Automatica 48(8), 1631–1638 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    S.V. Rakovic, B. Kouvaritakis, M. Cannon, Equi-normalization and exact scaling dynamics in homothetic tube MPC. Syst. Control Lett. 62(2), 209–217 (2013)CrossRefzbMATHGoogle Scholar
  22. 22.
    J.R. Gossner, B. Kouvaritakis, J.A. Rossiter, Stable generalized predictive control with constraints and bounded disturbances. Automatica 33(4), 551–568 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Y.I. Lee, B. Kouvaritakis, Linear matrix inequalities and polyhedral invariant sets in constrained robust predictive control. Int. J. Robust Nonlinear Control 10(13), 1079–1090 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Y.I. Lee, B. Kouvaritakis, A linear programming approach to constrained robust predictive control. IEEE Trans. Autom. Control 45(9), 1765–1770 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    F. Blanchini, S. Miani, Set-Theoretic Methods in Control (Birkhäuser, Basel, 2008)zbMATHGoogle Scholar
  26. 26.
    G. Bitsoris, On the positive invariance of polyhedral sets for discrete-time systems. Syst. Control Lett. 11(3), 243–248 (1988)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of OxfordOxfordUK

Personalised recommendations