Skip to main content

Nano-electrochemistry

  • Chapter
  • First Online:
Electrochemistry and Corrosion Science
  • 4014 Accesses

Abstract

Recent advances at a nanoscale make the atomic world very fascinating since images of nanoparticles or even atom clusters can be revealed on the surface of a substrate. Specifically considered hereafter is the scanning tunneling microscope (STM) for revealing atomic events and the electrochemical scanning tunneling microscope (ESTM) for characterizing electrochemical reactions at the probe tip and substrate. These techniques are briefly described using models and selected atomic images due to the lack of space in this textbook. Among several techniques, STM and ESTM are useful for studying fundamental electrochemical problems through nanoscale science. The studied electrochemical events are commonly conducted in a nanogap between a very sharp metallic tip and a substrate (electrode). The nanogap ranges from 1 nm to less than 10 nm, and it represents a potential energy barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.F. Yen, Environmental Chemistry: Essentials of Chemistry for Engineering Practice. Prentice Hall Environmental, vol. 4A (Prentice Hall PTR, New York, 1999)

    Google Scholar 

  2. T. Engel, P. Reid, Physical Chemistry (Pearson Education, Boston, 2013), pp. 279–286, 367–380

    Google Scholar 

  3. C.M.A. Brett, A.M.O. Brett, Electrochemistry Principles, Methods and Applications (Oxford University Press, New York, 1994), pp. 39–44

    Google Scholar 

  4. D.A. Jones, Principles and Prevention of Corrosion (Macmillan Publishing Company, New York, 1992), p. 40

    Google Scholar 

  5. J. O’M. Bockris, M.A.V. Devanathan, K. Muller, On the structure of charge interfaces. Proc. R. Soc. Lond. Ser. A 274 (1356), 55–79 (1963)

    Google Scholar 

  6. C.A. Barlow Jr., The electrical double layer, in Physical Chemistry: An Advanced Treatise. Vol. IXA/Electrochemistry, ed. by H. Eyring (Academic, New York, 1970)

    Google Scholar 

  7. T. Erdey-Gruz, Kinetics of Electrode Processes (Wiley-Interscience/Wiley, New York, 1972), p. 442

    Google Scholar 

  8. H. Wang, L. Pilon, Accurate simulations of electric double layer capacitance of ultramicroelectrodes. J. Phys. Chem. C 115, 16711–16719 (2011)

    Article  CAS  Google Scholar 

  9. J.W. Evans, L.C. De Jonghe, The Production of Inorganic Materials (Macmillan Publishing Company, New York, 1991)

    Google Scholar 

  10. A.J. Bard, L.R. Faulkner, Electrochemical Methods - Fundamentals and Applications, 2nd edn., Chaps. 1–2, 16 (Wiley, New York, 2001), pp. 548, 670

    Google Scholar 

  11. M. Jakob, H. Levanon, P.V. Kamat, Charge distribution between UV-irradiated TiO(2) and gold nanoparticles: determination of shift in the Fermi level. Nano Lett. 3 (3), 353–358 (2003)

    Article  CAS  Google Scholar 

  12. J. McBreen, Physical methods for investigation of electrode surfaces, in Fundamentals of Electrochemistry, 2nd edn. (Wiley, New Jersey, 2006), p. 485

    Google Scholar 

  13. M.-B. Song, J.-M. Jang, C.-W. Lee, Electron tunneling and electrochemical currents through interfacial water inside an STM junction. Bull. Korean Chem. Soc. 23 (1), 71–74 (2002)

    Article  CAS  Google Scholar 

  14. S. Duffe, T. Irawan, M. Bieletzki, T. Richter, B. Sieben, C. Yin, B. von Issendorff, M. Moseler, H. Hövel, Softlanding and STM Imaging of Ag561 Clusters on a C60Monolayer. Eur. Phys. J. D 1–8 (2007)

    Google Scholar 

  15. K. von Bergmann, Iron nanostructures studied by spin-polarised scanning tunneling microscopy, Ph.D. thesis, Universität Hamburg, 2004

    Google Scholar 

  16. C.J. Chen, Introduction to Scanning Tunneling Microscopy, 2nd edn. (Oxford University Press, New York, 2008), p. 24

    Google Scholar 

  17. N.D. Kolb, M.A. Schneeweiss, Scanning tunneling microscopy for metal deposition studies. Electrochem. Soc. Interface 26–30 (1999)

    Google Scholar 

  18. O.M. Magnussen, L. Zitzler, B. Gleich, M.R. Vogt, R.J. Behm, In-situ atomic-scale studies of the mechanisms and dynamics of metal dissolution by high-speed STM. Electrochem. Acta 46 (24), 3725–3733 (2001)

    Article  CAS  Google Scholar 

  19. D.M. Kolb, G.E. Engelmann, J.C. Ziegler, On the unusual electrochemical stability of nanofabricated copper clusters. Angew. Chem. Int. Ed. 39 (6), 1123–1125 (2000)

    Article  CAS  Google Scholar 

  20. Y.-F. Liu, K. Krug, P.-C. Lin, Y.-D. Chiu, W.-P. Dow, S.-L. Yau, Y.-L. Leea, In situ STM study of Cu electrodeposition on TBPS-modified Au(111) electrodes. J. Electrochem. Soc. 159 (2), D84–D90 (2012)

    Article  CAS  Google Scholar 

  21. D.M. Kolb, An atomistic view of electrochemistry. Surf. Sci. 500, 722–740 (2002)

    Article  CAS  Google Scholar 

  22. R.Q. Hwang, M.C. Bartelt, Scanning tunneling microscopy studies of metal on metal epitaxy. Chem. Rev. 97, 1063–1082 (1997)

    Article  CAS  Google Scholar 

  23. A. Lehnert, P. Buluschek, N. Weiss, J. Giesecke, M. Treier, S. Rusponi, H. Brune, High resolution in situ magneto-optic Kerr effect and scanning tunneling microscopy setup with all optical components in UHV. Rev. Sci. Instrum. 80, 023902, 1–7 (2009)

    Google Scholar 

  24. W. Auwärter, M. Muntwiler, J. Osterwalder, T. Greber, Defect lines and two-domain structure of hexagonal boron nitride films on Ni(111). Surf. Sci. 545, L735–L740 (2003)

    Article  Google Scholar 

  25. S. Speller, T. Rauch, A. Postnikov, W. Heiland, Scanning tunneling microscopy and spectroscopy of S on Pd(111). Phys. Rev. B 61 (11), 7297–7300 (2000)

    Article  CAS  Google Scholar 

  26. A.J. Bard, G. Denuault, H. Oongmolke, D. Mandler, D.O. Wipf, Scanning electrochemical microscopy: a new technique for the characterization and modification of surfaces. Acc. Chem. Res. 23, 357–363 (1990)

    Article  CAS  Google Scholar 

  27. J. Zhang, J. Ulstrup, Oxygen-free in-situ scanning tunneling microscopy. J. Electroanal. Chem. 599, 213–220 (2007)

    Article  CAS  Google Scholar 

  28. A.J. Bard, F.R.F. Fan, V.M. Michael, Scanning electrochemical microscopy, in Electroanalytical Chemistry: A Series of Advances, vol. 18, ed. by A.J. Bard (Marcel Dekker, New York, 1994), pp. 243–373

    Google Scholar 

  29. S. Bruckenstein, J. Janiszewska, Diffusion currents to (ultra) microelectrodes of various geometries: ellipsoids, spheroids and elliptical ‘disks. J. Electroanal. Chem. 538–539, 3–12 (2002)

    Article  Google Scholar 

  30. M. Fleischmann, S. Pons, D. Rolison, P.P. Schmidt, Ultramicroelectrodes (Datatech Systems, Morgantown, NC, 1987)

    Google Scholar 

  31. A. Szabo, Theory of the current at microelectrodes: application to ring electrodes. J. Phys. Chem. 91, 3108–3111 (1987)

    Article  CAS  Google Scholar 

  32. G. Nagy, L. Nagy, Scanning electrochemical microscopy: a new way of making electrochemical experiments. Fresenius J. Anal. Chem. 366, 735–744 (2000)

    Article  CAS  Google Scholar 

  33. K.W. Kolasinski, Surface Science: Foundations of Catalysis and Nanoscience, 2nd edn. (Wiley, West Sussex, 2008), pp. 36–38

    Google Scholar 

  34. W. Schmickler, Interfacial Electrochemistry, vol. 12 (Oxford University Press, New York, 1996), pp. 72–76

    Google Scholar 

  35. E.F. Schubert, Physical Foundations of Solid-State Devices, 2006 edition, Chap. 9-5, 10-1 (Rensselaer Polytechnic Institute, Troy, NY)

    Google Scholar 

  36. A. Beiser, Concepts of Modern Physics, 6th edn. (McGraw-Hill Companies, Boston, 2003), pp. 193–196

    Google Scholar 

  37. A.D. Polyanin, A.I. Chernoutsan (eds.), A Concise Handbook of Mathematics, Physics, and Engineering Sciences (CRC Press, Taylor and Francis Group, LLC, Boca Raton, 2011), p. 577, 627

    Google Scholar 

  38. E.C. Kemble, The Fundamental Principles of Quantum Mechanics with Elementary Applications (Dover, New York, 1958)

    Google Scholar 

  39. A.I.M. Rae, Quantum Mechanics, 4th edn. (IOP Publishing Ltd., London, 2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Perez, N. (2016). Nano-electrochemistry. In: Electrochemistry and Corrosion Science. Springer, Cham. https://doi.org/10.1007/978-3-319-24847-9_4

Download citation

Publish with us

Policies and ethics