Hybrid Evolutionary Algorithm with Adaptive Crossover, Mutation and Simulated Annealing Processes to Project Scheduling

  • Virginia YannibelliEmail author
  • Analía Amandi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9375)


In this paper, we address a project scheduling problem that considers a priority optimization objective for project managers. This objective involves assigning the most effective set of human resources to each project activity. To solve the problem, we propose a hybrid evolutionary algorithm. This algorithm uses adaptive crossover, mutation and simulated annealing processes in order to improve the performance of the evolutionary search. These processes adapt their behavior based on the diversity of the evolutionary algorithm population. We compare the performance of the hybrid evolutionary algorithm with those of the algorithms previously proposed in the literature for solving the addressed problem. The obtained results indicate that the hybrid evolutionary algorithm significantly outperforms the previous algorithms.


Project scheduling Human resource assignment Multi-skilled resources Hybrid evolutionary algorithms Evolutionary algorithms Simulated annealing algorithms 


  1. 1.
    Heerkens, G.R.: Project Management. McGraw-Hill, New York (2002)Google Scholar
  2. 2.
    Wysocki, R.K.: Effective Project Management, 3rd edn. Wiley Publishing, Hoboken (2003)Google Scholar
  3. 3.
    Bellenguez, O., Néron, E.: Lower bounds for the multi-skill project scheduling problem with hierarchical levels of skills. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 229–243. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Hanne, T., Nickel, S.: A multiobjective evolutionary algorithm for scheduling and inspection planning in software development projects. Eur. J. Oper. Res. 167, 663–678 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gutjahr, W.J., Katzensteiner, S., Reiter, P., Stummer, Ch., Denk, M.: Competence-driven project portfolio selection, scheduling and staff assignment. CEJOR 16(3), 281–306 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Yannibelli, V., Amandi, A.: A knowledge-based evolutionary assistant to software development project scheduling. Expert Syst. Appl. 38(7), 8403–8413 (2011)CrossRefGoogle Scholar
  7. 7.
    Yannibelli, V., Amandi, A.: A memetic approach to project scheduling that maximizes the effectiveness of the human resources assigned to project activities. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012, Part I. LNCS, vol. 7208, pp. 159–173. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Yannibelli, V., Amandi, A.: A diversity-adaptive hybrid evolutionary algorithm to solve a project scheduling problem. In: Corchado, E., Lozano, J.A., Quintián, H., Yin, H. (eds.) IDEAL 2014. LNCS, vol. 8669, pp. 412–423. Springer, Heidelberg (2014)Google Scholar
  9. 9.
    Blazewicz, J., Lenstra, J., Rinnooy Kan, A.: Scheduling subject to resource constraints: classification and complexity. Discrete Appl. Math. 5, 11–24 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Yannibelli, V., Amandi, A.: Project scheduling: a multi-objective evolutionary algorithm that optimizes the effectiveness of human resources and the project makespan. Eng. Optim. 45(1), 45–65 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Srinivas, M., Patnaik, L.M.: Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Trans. Syst. Man Cybern. 24(4), 656–667 (1994)CrossRefGoogle Scholar
  12. 12.
    Bellenguez, O., Néron, E.: A branch-and-bound method for solving multi-skill project scheduling problem. RAIRO – Oper. Res. 41(2), 155–170 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Drezet, L.E., Billaut, J.C.: A project scheduling problem with labour constraints and time-dependent activities requirements. Int. J. Prod. Econ. 112, 217–225 (2008)CrossRefGoogle Scholar
  14. 14.
    Li, H., Womer, K.: Scheduling projects with multi-skilled personnel by a hybrid MILP/CP benders decomposition algorithm. J. Sched. 12, 281–298 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Valls, V., Pérez, A., Quintanilla, S.: Skilled workforce scheduling in service centers. Eur. J. Oper. Res. 193(3), 791–804 (2009)CrossRefzbMATHGoogle Scholar
  16. 16.
    Aickelin, U., Burke, E., Li, J.: An evolutionary squeaky wheel optimization approach to personnel scheduling. IEEE Trans. Evol. Comput. 13(2), 433–443 (2009)CrossRefGoogle Scholar
  17. 17.
    Heimerl, C., Kolisch, R.: Scheduling and staffing multiple projects with a multi-skilled workforce. OR Spectr. 32(4), 343–368 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing, 2nd edn. Springer, Berlin (2007)Google Scholar
  19. 19.
    Rodriguez, F.J., García-Martínez, C., Lozano, M.: Hybrid metaheuristics based on evolutionary algorithms and simulated annealing: taxonomy, comparison, and synergy test. IEEE Trans. Evol. Comput. 16(6), 787–800 (2012)CrossRefGoogle Scholar
  20. 20.
    Talbi, E. (ed.): Hybrid Metaheuristics. SCI 434. Springer, Berlin, Heidelberg (2013)zbMATHGoogle Scholar
  21. 21.
    Kolisch, R., Hartmann, S.: Experimental investigation of heuristics for resource-constrained project scheduling: an update. Eur. J. Oper. Res. 174, 23–37 (2006)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.ISISTAN Research InstituteUNCPBA UniversityTandilArgentina
  2. 2.CONICETNational Council of Scientific and Technological ResearchBuenos AiresArgentina

Personalised recommendations