Improving the NSGA-II Performance with an External Population

  • Krzysztof MichalakEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9375)


The NSGA-II algorithm is among the best performing ones in the area of multiobjective optimization. The classic version of this algorithm does not utilize any external population. In this work several techniques of reintroducing specimens from the external population back to the main one are proposed. These techniques were tested on multiobjective optimization problems named ZDT-1, ZDT-2, ZDT-3, ZDT-4 and ZDT-6. Algorithm performance was evaluated with the hypervolume measure commonly used in the literature. Experiments show that reintroducing specimens from the external population improves the performance of the algorithm.


Multiobjective optimization NSGA-II External population 


  1. 1.
    Corder, G.W., Foreman, D.I.: Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach. Wiley, Hoboken (2009) CrossRefzbMATHGoogle Scholar
  2. 2.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comp. 6, 182–197 (2002)CrossRefGoogle Scholar
  3. 3.
    Hamdan, M.: On the disruption-level of polynomial mutation for evolutionary multi-objective optimisation algorithms. Comput. Inf. 29(5), 783–800 (2010)zbMATHGoogle Scholar
  4. 4.
    Purshouse, R.: On the evolutionary optimisation of many objectives. Ph. D. thesis, The University of Sheffield, UK (2003)Google Scholar
  5. 5.
    Sharma, D., Kumar, A., Deb, K., Sindhya, K.: Hybridization of SBX based NSGA-II and sequential quadratic programming for solving multi-objective optimization problems. In: IEEE Congress on Evolutionary Computation, pp. 3003–3010. IEEE (2007)Google Scholar
  6. 6.
    Tao, G., Michalewicz, Z.: Inver-over operator for the TSP. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 803–812. Springer, Heidelberg (1998) CrossRefGoogle Scholar
  7. 7.
    While, L., Hingston, P., Barone, L., Huband, S.: A faster algorithm for calculating hypervolume. IEEE Trans. Evol. Comp. 10(1), 29–38 (2006)CrossRefGoogle Scholar
  8. 8.
    Yang, L., Yang, C., Liu, Y.: Particle swarm optimization with simulated binary crossover. In: 2014 Fifth International Conference on Intelligent Systems Design and Engineering Applications (ISDEA), pp. 710–713 (2014)Google Scholar
  9. 9.
    Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comp. 11(6), 712–731 (2007)CrossRefGoogle Scholar
  10. 10.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm for multiobjective optimization. In: Giannakoglou, K., et al. (eds.) Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems (EUROGEN 2001), pp. 95–100. International Center for Numerical Methods in Engineering (CIMNE) (2002)Google Scholar
  11. 11.
    Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comp. 3(4), 257–271 (1999)CrossRefGoogle Scholar
  12. 12.
    Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)CrossRefGoogle Scholar
  13. 13.
    Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comp. 7, 117–132 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Information Technologies, Institute of Business InformaticsWroclaw University of EconomicsWroclawPoland

Personalised recommendations