Application of Cascades of Classifiers in the Vehicle Detection Scenario for the ‘SM4Public’ System

  • Dariusz FrejlichowskiEmail author
  • Katarzyna Gościewska
  • Adam Nowosielski
  • Paweł Forczmański
  • Radosław Hofman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9375)


In the paper, the use of cascading approaches for vehicle classification in static images is described. The problem concerns the selection of algorithms to be implemented in the ‘SM4Public’ security system for public spaces and is focused on specific system working scenario: the detection of vehicles in static images. Three feature extractors were experimentally evaluated using a cascading classification approach based on AdaBoost. The algorithms selected for feature extraction are Histogram of Oriented Gradients, Local Binary Patterns and Haar-like features. The paper contains brief introduction to the system characteristics, the description of the employed algorithms and the presentation of the experimental results.


Static Image Local Binary Pattern False Detection Weak Classifier Vehicle Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The project “Security system for public spaces—‘SM4Public’ prototype construction and implementation” (original title: Budowa i wdrożenie prototypu systemu bezpieczeństwa przestrzeni publicznej ‘SM4Public’) is a project co-founded by European Union (EU) (project number PL: POIG.01.04.00-32-244/13, value: 12.936.684,77 PLN, EU contribution: 6.528.823,81 PLN, realization period: 01.06.2014–31.10.2015). European Funds—for the development of innovative economy (Fundusze Europejskie—dla rozwoju innowacyjnej gospodarki).


  1. 1.
    Frejlichowski, D., Forczmański, P., Nowosielski, A., Gościewska, K., Hofman, R.: SmartMonitor: an approach to simple, intelligent and affordable visual surveillance system. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2012. LNCS, vol. 7594, pp. 726–734. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  2. 2.
    Frejlichowski, D., Gościewska, K., Forczmański, P., Nowosielski, A., Hofman, R.: Extraction of the foreground regions by means of the adaptive background modelling based on various colour components for a visual surveillance system. In: Burduk, R., Jackowski, K., Kurzynski, M., Wozniak, M., Zolnierek, A. (eds.) CORES 2013. AISC, vol. 226, pp. 355–364. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  3. 3.
    Frejlichowski, D., Gościewska, K., Forczmański, P., Hofman, R.: ‘SmartMonitor’–an intelligent security system for the protection of individuals and small properties with the possibility of home automation. Sensors 14, 9922–9948 (2014)CrossRefGoogle Scholar
  4. 4.
    Frejlichowski, D., Gościewska, K., Forczmański, P., Hofman, R.: Application of foreground object patterns analysis for event detection in an innovative video surveillance system. Pattern Anal. Appl. 18, 473–484 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Rajagopalan, A.N., Burlina, P., Chellappa, R.: Higher order statistical learning for vehicle detection in images. In: Proceedings of the 7th IEEE International Conference on Computer Vision, vol. 2, pp. 1204–1209 (1999)Google Scholar
  6. 6.
    Aarthi, R., Padmavathi, S., Amudha, J.: Vehicle Detection in static images using color and corner map. In: 2010 International Conference on Recent Trends in Information, Telecommunication and Computing, pp. 244–246 (2010)Google Scholar
  7. 7.
    Wen, X., Zhao, H., Wang, N., Yuan, H.: A Rear-vehicle detection system for static images based on monocular vision. In: 9th International Conference on Control, Automation, Robotics and Vision, pp. 1–4 (2006)Google Scholar
  8. 8.
    Tang, Y., Zhang, C., Gu, R., Li, P., Yang, B.: Vehicle detection and recognition for intelligent traffic surveillance system. Multimed.Tools Appl., 1-16. Springer US (2015)Google Scholar
  9. 9.
    Sun, D., Watada, J.: Detecting pedestrians and vehicles in traffic scene based on boosted HOG features and SVM. In: 2015 IEEE 9th International Symposium on Intelligent Signal Processing (WISP), pp. 1–4, 15–17 May 2015Google Scholar
  10. 10.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn. 1, 886–893 (2005)Google Scholar
  11. 11.
    Ojala, T., Pietikinen, M., Harwood, D.: Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. In: Proceedings of the 12th International Conference on Pattern Recognition, vol. 1, pp. 582–585 (1994)Google Scholar
  12. 12.
    He, D.C., Wang, L.: Texture unit, texture spectrum, and texture analysis. IEEE Trans. Geosci. Remote 28, 509–512 (1990)CrossRefGoogle Scholar
  13. 13.
    Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vision 57(2), 137–154 (2004)CrossRefGoogle Scholar
  14. 14.
    Forczmański, P., Seweryn, M.: Surveillance video stream analysis using adaptive background model and object recognition. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2010, Part I. LNCS, vol. 6374, pp. 114–121. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  15. 15.
    Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. In: Proceedings of the 2nd European Conference on Computational Learning Theory, pp. 23–37 (1995)Google Scholar
  16. 16.
    Agarwal, S., Awan, A., Roth, D.: Learning to detect objects in images via a sparse, part-based representation. IEEE Trans. Pattern Anal. 26(11), 1475–1490 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Dariusz Frejlichowski
    • 1
    Email author
  • Katarzyna Gościewska
    • 1
    • 2
  • Adam Nowosielski
    • 1
  • Paweł Forczmański
    • 1
  • Radosław Hofman
    • 2
  1. 1.Faculty of Computer ScienceWest Pomeranian University of Technology, SzczecinSzczecinPoland
  2. 2.Smart Monitor Sp. z o.o.SzczecinPoland

Personalised recommendations