Advertisement

Information Retrieval and Data Forecasting via Probabilistic Nodes Combination

  • Dariusz Jacek JakóbczakEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9375)

Abstract

Proposed method, called Probabilistic Nodes Combination (PNC), is the method of 2D data interpolation and extrapolation. Nodes are treated as characteristic points of information retrieval and data forecasting. PNC modeling via nodes combination and parameter γ as probability distribution function enables 2D point extrapolation and interpolation. Two-dimensional information is modeled via nodes combination and some functions as continuous probability distribution functions: polynomial, sine, cosine, tangent, cotangent, logarithm, exponent, arc sin, arc cos, arc tan, arc cot or power function. Extrapolated values are used as the support in data forecasting.

Keywords

Information retrieval Data extrapolation Curve interpolation PNC method Probabilistic modeling Forecasting 

References

  1. 1.
    Brachman, R.J., Levesque, H.J.: Knowledge Representation and Reasoning. Morgan Kaufman, San Francisco (2004)zbMATHGoogle Scholar
  2. 2.
    Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. MIT Press, Cambridge (1995)zbMATHGoogle Scholar
  3. 3.
    Straffin, P.D.: Game Theory and Strategy. Mathematical Association of America, Washington, D.C. (1993)zbMATHGoogle Scholar
  4. 4.
    Watson, J.: Strategy – An Introduction to Game Theory. University of California, San Diego (2002)Google Scholar
  5. 5.
    Markman, A.B.: Knowledge Representation. Lawrence Erlbaum Associates, New Jersey (1998)Google Scholar
  6. 6.
    Sowa, J.F.: Knowledge Representation: Logical, Philosophical and Computational Foundations. Brooks/Cole, New York (2000)Google Scholar
  7. 7.
    Soussen, C., Mohammad-Djafari, A.: Polygonal and polyhedral contour reconstruction in computed tomography. IEEE Trans. Image Process. 11(13), 1507–1523 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Tang, K.: Geometric optimization algorithms in manufacturing. Comput. Aided Des. Appl. 2(6), 747–757 (2005)CrossRefGoogle Scholar
  9. 9.
    Kozera, R.: Curve Modeling via Interpolation Based on Multidimensional Reduced Data. Silesian University of Technology Press, Gliwice (2004)Google Scholar
  10. 10.
    Collins II, G.W.: Fundamental Numerical Methods and Data Analysis. Case Western Reserve University, Cleveland (2003)Google Scholar
  11. 11.
    Chapra, S.C.: Applied Numerical Methods. McGraw-Hill, Columbus (2012)Google Scholar
  12. 12.
    Ralston, A., Rabinowitz, P.: A First Course in Numerical Analysis, 2nd edn. Dover Publications, New York (2001)zbMATHGoogle Scholar
  13. 13.
    Schumaker, L.L.: Spline Functions: Basic Theory. Cambridge Mathematical Library, Cambridge (2007)CrossRefzbMATHGoogle Scholar
  14. 14.
    Dahlquist, G., Bjoerck, A.: Numerical Methods. Prentice Hall, New York (1974)Google Scholar
  15. 15.
    Jakóbczak, D.J.: 2D Curve Modeling via the Method of Probabilistic Nodes Combination - Shape Representation, Object Modeling and Curve Interpolation-Extrapolation with the Applications. LAP Lambert Academic Publishing, Saarbrucken (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Electronics and Computer ScienceTechnical University of KoszalinKoszalinPoland

Personalised recommendations