A Bacterial Colony Algorithm for Association Rule Mining

  • Danilo Souza da CunhaEmail author
  • Rafael Silveira Xavier
  • Leandro Nunes de Castro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9375)


Bacterial colonies perform a cooperative distributed exploration of the environment. This paper describes bacterial colony networks and their skills to explore resources as a tool for mining association rules in databases. The proposed algorithm is designed to maintain diverse solutions to the problem at hand, and its performance is compared to other well-known bio-inspired algorithms, including a genetic and an immune algorithm (CLONALG) and, also, to Apriori over some benchmarks from the literature.


Bio-inspired algorithm Bacterial colony Association rules Data mining 



The authors thank CAPES, Fapesp, CNPq and MackPesquisa for the financial support.


  1. 1.
    Matsushita, M., Fujikawa, H.: Diffusion-limited growth in bacterial colony formation. Physica A 168, 498–506 (1990)CrossRefGoogle Scholar
  2. 2.
    Ben-Jacob, E.: “Learning from bacteria about natural information processing”, natural genetic engineering and natural genome editing. Ann. N.Y. Acad. Sci. 1178, 78–90 (2009)CrossRefGoogle Scholar
  3. 3.
    Xavier, R.S., Omar, N., de Castro, L.N.: Bacterial colony: information processing and computation behavior. In: NaBIC, pp. 439–443 (2011)Google Scholar
  4. 4.
    da Cunha, D.S., de Castro, L.N.: Evolutionary and immune algorithms applied to association rule mining. In: Panigrahi, B.K., Das, S., Suganthan, P.N., Nanda, P.K. (eds.) SEMCCO 2012. LNCS, vol. 7677, pp. 628–635. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data Ser. SIGMOD 1993, pp. 207–216. ACM, New York, NY, USA (1993).
  6. 6.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of 20th International Conference on Very Large Data Bases VLDB, pp. 487–499 (1994)Google Scholar
  7. 7.
    Dehuri, S., Jagadev, A.K., Ghosh, A., Mall, R.: Multi-objective genetic algorithm for association rule mining using a homogeneous dedicated cluster of workstations. Am. J. Appl. Sci. 3(11), 2086–2095 (2006)CrossRefGoogle Scholar
  8. 8.
    Cios, K.J., Pedrycz, W., Swiniarski, R.W.: Data Mining: A Knowledge Discovery Approach, vol. XV. Springer, Berlin (2007)zbMATHGoogle Scholar
  9. 9.
    Ming, L.: A novel swarm intelligence optimization inspired by evolution process of a bacterial colony. In: 2012 10th World Congress on Intelligence Control and Automation (WCICA), pp. 450–453, July 2012Google Scholar
  10. 10.
    Das, S., Biswas, A., Dasgupta, S., Abraham, A.: Bacterial foraging optimization algorithm: theoretical foundations, analysis, and applications. In: Abraham, A., Hassanien, A.-E., Siarry, P., Engelbrecht, A. (eds.) Foundations of Computational Intelligence Volume 3. SCI, vol. 203, pp. 23–55. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell, 4th edn. Garland Science, New York (2002)Google Scholar
  12. 12.
    Ben-Jacob, E., Shapira, Y., Tauber, A.I.: Seeking the foundations of cognition in bacteria: from schrdinger’s negative entropy to latent information. Physica A 359(1–4), 495–524 (2006)CrossRefGoogle Scholar
  13. 13.
    del Jesus, M.J., Gamez, J.A., Gonzalez, P., Puerta, J.M.: On the discovery of association rules by means of evolutionary algorithms. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 1(5), 397–415 (2011)CrossRefGoogle Scholar
  14. 14.
    Dehuri, S., Jagadev, A.K., Ghosh, A., Mall, R.: Multiobjective genetic algorithm for association rule mining using a homogeneous dedicated cluster of workstations. Am. J. Appl. Sci. 3, 2086–2095 (2006)CrossRefGoogle Scholar
  15. 15.
    Shenoy, P.D., Srinivasa, K.G., Venugopal, K.R., Patnaik, L.M.: Evolutionary approach for mining association rules on dynamic databases. In: Whang, K.-Y., Jeon, J., Shim, K., Srivastava, J. (eds.) PAKDD 2003. LNCS, vol. 2637, pp. 325–336. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Venugopal, K.R., Srinivasa, K.G., Patnaik, L.M.: Dynamic association rule mining using genetic algorithms. In: Venugopal, K.R., Srinivasa, K.G., Patnaik, L.M. (eds.) Soft Computing for Data Mining Applications. SCI, vol. 190, pp. 63–80. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    de Castro, L.N., Von Zuben, F.V.: Learning and optimization using the clonal selection principle. IEEE Trans. Evol. Comput. 6(3), 239–251 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Danilo Souza da Cunha
    • 1
    Email author
  • Rafael Silveira Xavier
    • 1
  • Leandro Nunes de Castro
    • 1
  1. 1.Natural Computing Laboratory - LCoNMackenzie Presbyterian UniversitySão PauloBrazil

Personalised recommendations