A Particle Swarm Clustering Algorithm with Fuzzy Weighted Step Sizes

  • Alexandre SzaboEmail author
  • Myriam Regattieri Delgado
  • Leandro Nunes de Castro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9375)


This paper proposes a modification in the Fuzzy Particle Swarm Clustering (FPSC) algorithm such that membership degrees are used to weight the step size in the direction of the local and global best particles, and in its movement in the direction of the input data at every iteration. This results in the so-called Membership Weighted Fuzzy Particle Swarm Clustering (MWFPSC). The modified algorithm was applied to six benchmark datasets from the literature and its results compared to that of the standard FPSC and FCM algorithms. By introducing these modifications it could be observed a gain in accuracy, representativeness of the clusters found and the final Xie-Beni index, at the expense of a slight increase in the practical computational time of the algorithm.


Fuzzy clustering Particle swarm Data mining FPSC 



The authors thank FAPESP, CNPq, and CAPES for their financial support.


  1. 1.
    Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. (CSUR) 31(3), 264–323 (1999)CrossRefGoogle Scholar
  2. 2.
    Carmichael, J.W., George, J.A., Julius, R.S.: Finding natural clusters. Syst. Zool. 17(2), 144–150 (1968)CrossRefGoogle Scholar
  3. 3.
    Nagy, G.: State of the art in pattern recognition. In: IEEE, vol. 56, pp. 836–863 (1968)Google Scholar
  4. 4.
    de Oliveira, J.V., Pedrycz, W.: Advances in Fuzzy Clustering and Applications. Wiley, New York (2007)CrossRefGoogle Scholar
  5. 5.
    Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)CrossRefzbMATHGoogle Scholar
  6. 6.
    MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: 5th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297 (1967)Google Scholar
  7. 7.
    Cui, X., Potok, T., Palathingal, P.: Document clustering using particle swarm optimization. In: Swarm Intelligence Symposium, SIS 2005, pp. 185–191. IEEE (2005)Google Scholar
  8. 8.
    Mehdizadeh, E., Tavakkoli-Moghaddam, R.: A hybrid fuzzy clustering PSO algorithm for a clustering supplier problem. In: International Conference on Industrial Engineering and Engineering Management, pp. 1466–1470 (2007)Google Scholar
  9. 9.
    de Castro, L.N., Von Zuben, F.J.: aiNet: an artificial immune network for data analysis, chapter XII. In: Abbass, H.A., Saker, R.A., Newton, C.S. (eds.) Data Mining: A Heuristic Approach, pp. 231–259. Idea Group Publishing, Hershey (2001)Google Scholar
  10. 10.
    da Cruz, D.P.F., Maia, R.D., Szabo, A., de Castro, L.N.: A bee-inspired algorithm for optimal data clustering. In: IEEE Congress on Evolutionary Computation (CEC), pp. 3140–3147 (2013)Google Scholar
  11. 11.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, pp. 1942–1948, Perth, Australia (1995)Google Scholar
  12. 12.
    van der Merwe, D.W., Engelbrecht, A.P.: Data clustering using particle swarm optimization. In: IEEE Congress on Evolutionary Computation, pp. 215–220 (2003)Google Scholar
  13. 13.
    Omran, M.G.H., Salman, A., Engelbrecht, A.P.: Dynamic clustering using particle swarm optimization with application in image segmentation. Pat. Anal. Appl. 8, 332–344 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Cohen, S.C.M., de Castro, L.N.: Data clustering with particle swarms. In: IEEE World Congress on Computational Intelligence, pp. 6256–6262 (2006)Google Scholar
  15. 15.
    Szabo, A., de Castro, L.N., Delgado, M.R.: The proposal of a fuzzy clustering algorithm based on particle swarm. In: IEEE 3rd NABIC, pp. 459–465 (2011)Google Scholar
  16. 16.
    Pang, W., Wang, K-P, Zhou, C-G, Dong, L-J: Fuzzy discrete particle swarm optimization for solving traveling salesman problem. In: 4th International Conference on Computer and Information Technology, pp. 796–800 (2004)Google Scholar
  17. 17.
    Runkler, T.A., Katz, C.: Fuzzy Clustering by Particle Swarm Optimization. In: IEEE International Conference on Fuzzy Systems, pp. 601–608 (2006)Google Scholar
  18. 18.
    Izakian, H., Abraham, A.: Fuzzy C-means and fuzzy swarm for fuzzy clustering problem. Expert Syst. Appl. 38, 1835–1838 (2011)CrossRefGoogle Scholar
  19. 19.
    Xie, X.L., Beni, G.: A validity measure for fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 8, 841–847 (1991)CrossRefGoogle Scholar
  20. 20.
    Massey, F.J.: The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat. Assoc. 46(253), 68–78 (1951)CrossRefzbMATHGoogle Scholar
  21. 21.
    Derrac, J., Garcia, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1, 3–18 (2011)CrossRefGoogle Scholar
  22. 22.
    Cox, E.: Fuzzy Modeling and Genetic Algorithms for Data Mining and Exploration. Morgan Kaufmann, San Francisco (2005)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Alexandre Szabo
    • 1
    • 3
    Email author
  • Myriam Regattieri Delgado
    • 2
  • Leandro Nunes de Castro
    • 3
  1. 1.Federal University of ABCSanto AndréBrazil
  2. 2.Federal University of Technology of ParanáCuritibaBrazil
  3. 3.Natural Computing LaboratoryMackenzie UniversitySão PauloBrazil

Personalised recommendations