Fusion of Self-Organizing Maps with Different Sizes

  • Leandro Antonio PasaEmail author
  • José Alfredo F. Costa
  • Marcial Guerra de Medeiros
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9375)


An ensemble consists of several neural networks whose outputs are fused to produce a single output, which usually will be better than the individual results of each network. This work presents a methodology to aggregate the results of several Kohonen Self-Organizing Maps in an ensemble. Computational simulations demonstrate an increase in the accuracy classification and the proposed method effectiveness was evidenced by the Wilcoxon Signed Rank Test.


Ensemble Self-Organizing Maps Classification 



Authors would like to thank the support of CAPES Foundation, Ministry of Education of Brazil, Brasilia - DF, Zip Code 70.040-020.


  1. 1.
    Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  2. 2.
    Perrone, M.P., Cooper, L.N.: When networks disagree: ensemble methods for hybrid neural networks. In: Mammone, R.J. (ed.) Neural Networks for Speech and Image Processing, pp. 126–142. Chapman and Hall, New York (1993)Google Scholar
  3. 3.
    Kohonen, T.: Self-Organized Maps, 2nd edn. Springer, Berlin (1997)CrossRefzbMATHGoogle Scholar
  4. 4.
    Gonalves, M.L., De Andrade Netto, M.L., Costa, J.A.F., Zullo, J.: Data clustering using self-organizing maps segmented by mathematic morphology and simplified cluster validity indexes: an application in remotely sensed images. In: IJCNN 2006, International Joint Conference on Neural Networks, pp. 4421–4428 (2006)Google Scholar
  5. 5.
    Georgakis, A., Li, H., Gordan, M.: An ensemble of SOM networks for document organization and retrieval. In: International Conference on Adaptive Knowledge Representation and Reasoning (2005)Google Scholar
  6. 6.
    Saavedra, C., Salas, R., Moreno, S., Allende, H.: Fusion of Self Organizing Maps. In: Sandoval, F., Prieto, A.G., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 227–234. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  7. 7.
    Corchado, E., Baruque, B.: WeVoS-ViSOM: an ensemble summarization algorithm for enhanced data visualization. Neurocomputing 75, 171–184 (2012)CrossRefGoogle Scholar
  8. 8.
    Borrajo, M.L., Baruque, B., Corchado, E., Bajo, J., Corchado, J.M.: Hybrid neural intelligent system to predict business failure in small-to-medium-size enterprises. Int. J. Neural Syst. 21(04), 277–296 (2011)CrossRefGoogle Scholar
  9. 9.
    Jiang, Y., Zhi-Hua, Z.: SOM ensemble-based image segmentation. Neural Process. Lett. 20(3), 171–178 (2004)CrossRefGoogle Scholar
  10. 10.
    Low, K.H., Wee, K.L., Marcelo, H.A.: An ensemble of cooperative extended Kohonen maps for complex robot motion tasks. Neural Comput. 17, 1411–1445 (2005)CrossRefzbMATHGoogle Scholar
  11. 11.
    DeLooze, L.L.: Attack characterization and intrusion detection using an ensemble of self-organizing maps. In: 2006 IEEE Information Assurance Workshop, pp. 108–115 (2006)Google Scholar
  12. 12.
    Fustes, D., Dafonte, C., Arcay, B., Manteiga, M., Smith, K., Vallenari, A., Luri, X.: SOM ensemble for unsupervised outlier analysis. Application to outlier identification in the Gaia astronomical survey. Expert Syst. Appl. 40(5), 1530–1541 (2013)CrossRefGoogle Scholar
  13. 13.
    Tsai, C.-F.: Combining cluster analysis with classifier ensembles to predict financial distress. Inf. Fusion 16, 46–58 (2014)CrossRefGoogle Scholar
  14. 14.
    Zhou, Z.-H., Wu, J., Tang, W.: Ensembling neural networks: many could be better than all. Artif. Intell. 137(1–2), 239–263 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Bache, K., Lichman, M.: Machine Learning Repository. University of California, School of Information and Computer Sciences, Irvine (2013) Google Scholar
  16. 16.
    Ultsch, A.: Clustering with SOM: U*C. In: Proceedings Workshop on Self-Organizing Maps (WSOM 2005), pp. 75–82 (2005)Google Scholar
  17. 17.
    Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Leandro Antonio Pasa
    • 1
    • 2
    Email author
  • José Alfredo F. Costa
    • 2
  • Marcial Guerra de Medeiros
    • 2
  1. 1.Federal University of Technology – Paraná, UTFPRMedianeiraBrazil
  2. 2.Federal University of Rio Grande do Norte, UFRNNatalBrazil

Personalised recommendations