Skip to main content

Changes in Cognitive Function Related to Chemotherapy

  • Chapter

Abstract

Chemotherapy-related cognitive impairment, or CRCI, is not yet well understood. It is a phenomenon that occurs among a subset of cancer patients who have received chemotherapy. In general, it is defined as a clinically meaningful or statistically significant decline in cognitive function – such as memory, attention, verbal memory, executive function, or information processing speed – that is associated with chemotherapy treatment [1–3]. However, cognitive function is complex and is affected by a number of other changes patients experience, such as hormonal changes, stress/distress, worry, anxiety, depression, fatigue, aging, and the effects of anesthesia during surgery, all of which are known to affect cognitive function [4–7].

Keywords

  • Breast Cancer Patient
  • Fractional Anisotropy
  • Breast Cancer Survivor
  • Free Recall
  • Gray Matter Volume

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-24814-1_11
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-24814-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 11.1

References

  1. Correa DD, Hess LM. Cognitive function and quality of life in ovarian cancer. Gynecol Oncol. 2012;124(3):404–9.

    PubMed  CrossRef  Google Scholar 

  2. Hess LM, Insel KC. Chemotherapy-related change in cognitive function: a conceptual model. Oncol Nurs Forum. 2007;34(5):981–94.

    PubMed  CrossRef  Google Scholar 

  3. Hodgson KD, et al. A meta-analysis of the effects of chemotherapy on cognition in patients with cancer. Cancer Treat Rev. 2013;39(3):297–304.

    CAS  PubMed  CrossRef  Google Scholar 

  4. Lange M, et al. Baseline cognitive functions among elderly patients with localised breast cancer. Eur J Cancer. 2014;50(13):2181–9.

    PubMed  CrossRef  Google Scholar 

  5. Merriman JD, et al. Proposed mechanisms for cancer- and treatment-related cognitive changes. Semin Oncol Nurs. 2013;29(4):260–9.

    PubMed  CrossRef  Google Scholar 

  6. van Amstel PFK. Distress screening remains important during follow-up after primary breast cancer treatment. Support Care Cancer. 2013;21(8):2107–15.

    CrossRef  Google Scholar 

  7. Janelsins MC, et al. Prevalence, mechanisms, and management of cancer-related cognitive impairment. Int Rev Psychiatry. 2014;26(1):102–13.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  8. Silberfarb PM. Chemotherapy and cognitive defects in cancer patients. Annu Rev Med. 1983;34:35–46.

    CAS  PubMed  CrossRef  Google Scholar 

  9. Cull A, et al. Neurological and cognitive impairment in long-term survivors of small cell lung cancer. Eur J Cancer. 1994;30A(8):1067–74.

    CAS  PubMed  CrossRef  Google Scholar 

  10. Lindner OC, et al. A meta-analysis of cognitive impairment following adult cancer chemotherapy. Neuropsychology. 2014;28(5):726–40.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  11. Vardy J, et al. Assessing cognitive function in cancer patients. Support Care Cancer. 2006;14(11):1111–8.

    PubMed  CrossRef  Google Scholar 

  12. Craig CD, et al. Cognitive impairment in gynecologic cancers: a systematic review of current approaches to diagnosis and treatment. Support Care Cancer. 2014;22(1):279–87.

    PubMed  CrossRef  Google Scholar 

  13. Erlanger DM, et al. Development and validation of a web-based screening tool for monitoring cognitive status. J Head Trauma Rehabil. 2002;17(5):458–76.

    PubMed  CrossRef  Google Scholar 

  14. Collie A, Darby D, Maruff P. Computerised cognitive assessment of athletes with sports related head injury. Br J Sports Med. 2001;35(5):297–302.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  15. Fogel BS. The high sensitivity cognitive screen. Int Psychogeriatr. 1991;3(2):273–88.

    CAS  PubMed  CrossRef  Google Scholar 

  16. Randolph C, et al. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS): preliminary clinical validity. J Clin Exp Neuropsychol. 1998;20(3):310–9.

    CAS  PubMed  CrossRef  Google Scholar 

  17. Cheung YT, Chan A. Linguistic validation of Functional Assessment of Cancer Therapy-Cognitive Function (FACT-Cog): methodological concerns. Support Care Cancer. 2013;21(3):655–6.

    CAS  PubMed  CrossRef  Google Scholar 

  18. Jansen CE, et al. A meta-analysis of the sensitivity of various neuropsychological tests used to detect chemotherapy-induced cognitive impairment in patients with breast cancer. Oncol Nurs Forum. 2007;34(5):997–1005.

    PubMed  CrossRef  Google Scholar 

  19. Meyers CA, Wefel JS. The use of the mini-mental state examination to assess cognitive functioning in cancer trials: no ifs, ands, buts, or sensitivity. J Clin Oncol. 2003;21(19):3557–8.

    PubMed  CrossRef  Google Scholar 

  20. Wefel JS, et al. International cognition and cancer task force recommendations to harmonise studies of cognitive function in patients with cancer. Lancet Oncol. 2011;12(7):703–8.

    PubMed  CrossRef  Google Scholar 

  21. Shapiro AM, et al. Construct and concurrent validity of the Hopkins verbal learning test-revised. Clin Neuropsychol. 1999;13(3):348–58.

    CAS  PubMed  CrossRef  Google Scholar 

  22. Gondi V, et al. Decline in tested and self-reported cognitive functioning after prophylactic cranial irradiation for lung cancer: pooled secondary analysis of radiation therapy oncology group randomized trials 0212 and 0214. Int J Radiat Oncol Biol Phys. 2013;86(4):656–64.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  23. Fan HG, et al. The influence of erythropoietin on cognitive function in women following chemotherapy for breast cancer. Psychooncology. 2009;18(2):156–61.

    PubMed  CrossRef  Google Scholar 

  24. Johnson DR, et al. Early measures of cognitive function predict survival in patients with newly diagnosed glioblastoma. Neuro Oncol. 2012;14(6):808–16.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  25. Reitan RM. Validity of the trail making test as an indicator of organic brain damage. Percept Mot Skills. 1958;8:271–6.

    CrossRef  Google Scholar 

  26. Green J. Neuropsychological evaluation of the older adult. San Diego: Academic; 2000.

    Google Scholar 

  27. Cruzado JA, et al. Longitudinal study of cognitive dysfunctions induced by adjuvant chemotherapy in colon cancer patients. Support Care Cancer. 2014;22(7):1815–23.

    PubMed  CrossRef  Google Scholar 

  28. Tchen N, et al. Cognitive function, fatigue, and menopausal symptoms in women receiving adjuvant chemotherapy for breast cancer. J Clin Oncol. 2003;21(22):4175–83.

    PubMed  CrossRef  Google Scholar 

  29. Hermelink K, et al. Cognitive function during neoadjuvant chemotherapy for breast cancer: results of a prospective, multicenter, longitudinal study. Cancer. 2007;109(9):1905–13.

    CAS  PubMed  CrossRef  Google Scholar 

  30. Wefel JS, et al. The cognitive sequelae of standard-dose adjuvant chemotherapy in women with breast carcinoma: results of a prospective, randomized, longitudinal trial. Cancer. 2004;100(11):2292–9.

    CAS  PubMed  CrossRef  Google Scholar 

  31. Hensley ML, et al. Phase I/II study of weekly paclitaxel plus carboplatin and gemcitabine as first-line treatment of advanced-stage ovarian cancer: pathologic complete response and longitudinal assessment of impact on cognitive functioning. Gynecol Oncol. 2006;102(2):270–7.

    CAS  PubMed  CrossRef  Google Scholar 

  32. Meyers CA, Albitar M, Estey E. Cognitive impairment, fatigue, and cytokine levels in patients with acute myelogenous leukemia or myelodysplastic syndrome. Cancer. 2005;104(4):788–93.

    CAS  PubMed  CrossRef  Google Scholar 

  33. Strauss E, Sherman E, Spreen O. A compendium of neuropsychological tests: administration, norms and commentary. Oxford: Oxford University Press; 2006.

    Google Scholar 

  34. Ruff RM, et al. Benton controlled oral word association test: reliability and updated norms. Arch Clin Neuropsychol. 1996;11(4):329–38.

    CAS  PubMed  CrossRef  Google Scholar 

  35. Scheibel RS, Meyers CA, Levin VA. Cognitive dysfunction following surgery for intracerebral glioma: influence of histopathology, lesion location, and treatment. J Neurooncol. 1996;30(1):61–9.

    CAS  PubMed  CrossRef  Google Scholar 

  36. Jim HS, et al. Cognitive functioning in breast cancer survivors: a controlled comparison. Cancer. 2009;115(8):1776–83.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  37. Wefel JS, et al. Acute and late onset cognitive dysfunction associated with chemotherapy in women with breast cancer. Cancer. 2010;116(14):3348–56.

    PubMed  CrossRef  Google Scholar 

  38. Fayers P, Bottomley A. Quality of life research within the EORTC-the EORTC QLQ-C30. European organisation for research and treatment of cancer. Eur J Cancer. 2002;38 Suppl 4:S125–33.

    PubMed  CrossRef  Google Scholar 

  39. Smith AB, et al. Most domains of the european organisation for research and treatment of cancer quality of life questionnaire C30 are reliable. J Clin Epidemiol. 2014;67(8):952–7.

    PubMed  CrossRef  Google Scholar 

  40. Wagner LI, Sweet J, Butt Z, Lai J, Cella D. Measuring patient self-reported cognitive function: development of the functional assessment of cancer therapy-cognitive function instrument. J Support Oncol. 2009;7:32–9.

    Google Scholar 

  41. Joly F, et al. French version of the Functional Assessment of Cancer Therapy-Cognitive Function (FACT-Cog) version 3. Support Care Cancer. 2012;20(12):3297–305.

    CAS  PubMed  CrossRef  Google Scholar 

  42. Jim HS, et al. Meta-analysis of cognitive functioning in breast cancer survivors previously treated with standard-dose chemotherapy. J Clin Oncol. 2012;30(29):3578–87.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  43. Lepage C, et al. A prospective study of grey matter and cognitive function alterations in chemotherapy-treated breast cancer patients. Springerplus. 2014;3:444.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  44. McDonald BC, et al. Gray matter reduction associated with systemic chemotherapy for breast cancer: a prospective MRI study. Breast Cancer Res Treat. 2010;123(3):819–28.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  45. Bergouignan L, et al. Breast cancer affects both the hippocampus volume and the episodic autobiographical memory retrieval. PLoS One. 2011;6(10):e25349.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  46. McDonald BC, et al. Frontal gray matter reduction after breast cancer chemotherapy and association with executive symptoms: a replication and extension study. Brain Behav Immun. 2013;30(Suppl):S117–25.

    PubMed  CrossRef  Google Scholar 

  47. Conroy SK, et al. Alterations in brain structure and function in breast cancer survivors: effect of post-chemotherapy interval and relation to oxidative DNA damage. Breast Cancer Res Treat. 2013;137(2):493–502.

    CAS  PubMed  CrossRef  Google Scholar 

  48. Koppelmans V, et al. Global and focal brain volume in long-term breast cancer survivors exposed to adjuvant chemotherapy. Breast Cancer Res Treat. 2012;132(3):1099–106.

    CAS  PubMed  CrossRef  Google Scholar 

  49. de Ruiter MB, et al. Late effects of high-dose adjuvant chemotherapy on white and gray matter in breast cancer survivors: converging results from multimodal magnetic resonance imaging. Hum Brain Mapp. 2012;33(12):2971–83.

    PubMed  CrossRef  Google Scholar 

  50. Stouten-Kemperman MM, et al. Neurotoxicity in breast cancer survivors >/=10 years post-treatment is dependent on treatment type. Brain Imaging Behav. 2014;9(2):275–84.

    CrossRef  Google Scholar 

  51. Inagaki M, et al. Smaller regional volumes of brain gray and white matter demonstrated in breast cancer survivors exposed to adjuvant chemotherapy. Cancer. 2007;109(1):146–56.

    PubMed  CrossRef  Google Scholar 

  52. Deprez S, et al. Longitudinal assessment of chemotherapy-induced alterations in brain activation during multitasking and its relation with cognitive complaints. J Clin Oncol. 2014;32(19):2031–8.

    PubMed  CrossRef  Google Scholar 

  53. McDonald BC, et al. Alterations in brain activation during working memory processing associated with breast cancer and treatment: a prospective functional magnetic resonance imaging study. J Clin Oncol. 2012;30(20):2500–8.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  54. Koppelmans V, et al. Global and focal white matter integrity in breast cancer survivors 20 years after adjuvant chemotherapy. Hum Brain Mapp. 2014;35(3):889–99.

    PubMed  CrossRef  Google Scholar 

  55. Abraham J, et al. Adjuvant chemotherapy for breast cancer: effects on cerebral white matter seen in diffusion tensor imaging. Clin Breast Cancer. 2008;8(1):88–91.

    PubMed  CrossRef  Google Scholar 

  56. Deprez S, et al. Longitudinal assessment of chemotherapy-induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning. J Clin Oncol. 2012;30(3):274–81.

    PubMed  CrossRef  Google Scholar 

  57. Deprez S, et al. Chemotherapy-induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning in breast cancer patients. Hum Brain Mapp. 2011;32(3):480–93.

    PubMed  CrossRef  Google Scholar 

  58. Kesler SR, Kent JS, O'Hara R. Prefrontal cortex and executive function impairments in primary breast cancer. Arch Neurol. 2011;68(11):1447–53.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  59. de Ruiter MB, et al. Cerebral hyporesponsiveness and cognitive impairment 10 years after chemotherapy for breast cancer. Hum Brain Mapp. 2011;32(8):1206–19.

    PubMed  CrossRef  Google Scholar 

  60. Silverman DH, et al. Altered frontocortical, cerebellar, and basal ganglia activity in adjuvant-treated breast cancer survivors 5–10 years after chemotherapy. Breast Cancer Res Treat. 2007;103(3):303–11.

    CAS  PubMed  CrossRef  Google Scholar 

  61. Ferguson RJ, et al. Brain structure and function differences in monozygotic twins: possible effects of breast cancer chemotherapy. J Clin Oncol. 2007;25(25):3866–70.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  62. Scherling C, et al. Prechemotherapy differences in response inhibition in breast cancer patients compared to controls: a functional magnetic resonance imaging study. J Clin Exp Neuropsychol. 2012;34(5):543–60.

    PubMed  CrossRef  Google Scholar 

  63. Bruno J, Hosseini SM, Kesler S. Altered resting state functional brain network topology in chemotherapy-treated breast cancer survivors. Neurobiol Dis. 2012;48(3):329–38.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  64. Cimprich B, et al. Prechemotherapy alterations in brain function in women with breast cancer. J Clin Exp Neuropsychol. 2010;32(3):324–31.

    PubMed  CrossRef  Google Scholar 

  65. Askren MK, et al. Neuromarkers of fatigue and cognitive complaints following chemotherapy for breast cancer: a prospective fMRI investigation. Breast Cancer Res Treat. 2014;147(2):445–55.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  66. Deprez S, et al. Diffusion tensor MRI of chemotherapy-induced cognitive impairment in non-CNS cancer patients: a review. Brain Imaging Behav. 2013;7(4):409–35.

    PubMed  CrossRef  Google Scholar 

  67. Reuter-Lorenz PA, Cimprich B. Cognitive function and breast cancer: promise and potential insights from functional brain imaging. Breast Cancer Res Treat. 2013;137(1):33–43.

    CAS  PubMed  CrossRef  Google Scholar 

  68. Kaiser J, Bledowski C, Dietrich J. Neural correlates of chemotherapy-related cognitive impairment. Cortex. 2014;54:33–50.

    PubMed  CrossRef  Google Scholar 

  69. Hess LM, Huang H, Hanlon A, Robinson W, Johnson R, Chambers SK, Mannel RS, Puls L, Davidson SA, Method M, Lele S, Havrilesky L, Nelson T, Alberts DS.Cognitive function during and six months following chemotherapy for front-line treatment of ovarian, primary peritoneal or fallopian tube cancer: An NRG oncology/gynecologic oncology group study. Gynecol Oncol. 2015 Oct 8. pii: S0090-8258(15)30152-9. doi: 10.1016/j.ygyno.2015.10.003.

    Google Scholar 

  70. Using bio markers to predict disease recurrence and cognitive function in high risk breast cancer (Cyto-Cog). 2012. 10 Oct 2014; Available from: http://www.clinicaltrials.gov/ct2/show/NCT00756132.

  71. Effects of meditation on cognitive function and quality of life. 2014. 10 Oct 2014; Available from: http://www.clinicaltrials.gov/ct2/show/NCT02162329.

  72. The effects of physical activity and low-dose ibuprofen on cognitive function in cancer patients. 2014. 10 Oct 2014; Available from: http://www.clinicaltrials.gov/ct2/show/NCT01238120.

  73. Von Ah D, Allen DH, Jansen CE, Wulff J, Johnson L, Irwin MM, Maloney CM, Moriarty KA, Vrabel M. Putting evidence into practice®: evidence-based interventions for cancer and cancer treatment-related cognitive impairment. 2014 10 Oct 2014; Available from: https://www.ons.org/practice-resources/pep/cognitive-impairment.

  74. Von Ah D, Jansen C, Allen DH, Schiavone RM, Wulff J. Putting evidence into practice: evidence-based interventions for cancer and cancer treatment-related cognitive function. Clin J Oncol Nurs. 2011;15(6):607–15.

    CrossRef  Google Scholar 

  75. Hassler MR, et al. Neurocognitive training in patients with high-grade glioma: a pilot study. J Neurooncol. 2010;97(1):109–15.

    PubMed  CrossRef  Google Scholar 

  76. Poppelreuter M, Weis J, Bartsch HH. Effects of specific neuropsychological training programs for breast cancer patients after adjuvant chemotherapy. J Psychosoc Oncol. 2009;27(2):274–96.

    CAS  PubMed  CrossRef  Google Scholar 

  77. Von Ah D, et al. Advanced cognitive training for breast cancer survivors: a randomized controlled trial. Breast Cancer Res Treat. 2012;135(3):799–809.

    CrossRef  Google Scholar 

  78. Cognitive rehabilitation group intervention for breast cancer survivors. 2014. 20 Oct 14; Available from: http://clinicaltrials.gov/ct2/show/NCT01540955.

  79. LIVESTRONG Care Plan. 2014. 24 Oct 2014; Available from: http://www.livestrongcareplan.org/.

  80. Assessment of Cognitive Function in Breast Cancer and Lymphoma Patients Receiving Chemotherapy (CANTAB). 2014. 10 Oct 14; Available from: http://www.clinicaltrials.gov/ct2/show/NCT01382082.

  81. The impact of androgen ablation therapy on cognitive functioning and functional status in men with prostate cancer age 65 and older. 2014. 10 Oct 14; Available from: http://www.clinicaltrials.gov/ct2/show/nct00579072.

  82. Cancer and disorders of cognitive functions and quality of life: “cognitive rehabilitation in patients suffering from cancer and treated with chemotherapy”. 2014. 10 Oct 2014; Available from: http://www.clinicaltrials.gov/ct2/show/NCT01788618.

  83. Costas-Muniz R, et al. Cancer stage knowledge and desire for information: mismatch in Latino cancer patients? J Cancer Educ. 2013;28(3):458–65.

    PubMed  CrossRef  Google Scholar 

  84. Qiu WL, et al. Requests for health education from Chinese cancer patients during their recovery period: a cross-sectional study. J Cancer Educ. 2013;28(3):428–34.

    PubMed  CrossRef  Google Scholar 

  85. Oral therapies in oncology: cognitive function and compliance. 2014 10 Oct 2014; Available from: http://www.clinicaltrials.gov/ct2/show/NCT01597284.

  86. Dale J, et al. Tightening up? Impact of musculoskeletal ultrasound disease activity assessment on early rheumatoid arthritis patients treated using a treat to target strategy. Arthritis Care Res. 2014;66(1):19–26.

    CrossRef  Google Scholar 

  87. Memory and thinking skills workshop in improving cognitive rehabilitation in gynecologic and breast cancer survivors. 2014. 10 Oct 2014; Available from: http://www.clinicaltrials.gov/ct2/show/NCT01641068.

  88. Masucci L, et al. Predictors of health service use over the palliative care trajectory. J Palliat Med. 2013;16(5):524–30.

    PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa M. Hess PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hess, L.M., Chin, S. (2016). Changes in Cognitive Function Related to Chemotherapy. In: Alberts, D., Lluria-Prevatt, M., Kha, S., Weihs, K. (eds) Supportive Cancer Care. Springer, Cham. https://doi.org/10.1007/978-3-319-24814-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24814-1_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24812-7

  • Online ISBN: 978-3-319-24814-1

  • eBook Packages: MedicineMedicine (R0)