Skip to main content

Supersymmetry Breaking

  • Chapter
  • First Online:
Supersymmetry and Noncommutative Geometry

Part of the book series: SpringerBriefs in Mathematical Physics ((BRIEFSMAPHY,volume 9))

  • 1123 Accesses

Abstract

With the previously obtained classification of potentially supersymmetric models in noncommutative geometry we now address the question on how to naturally break supersymmetry. In this chapter we will shortly review soft supersymmetry breaking and analyze the question which soft supersymmetry breaking terms are present in the spectral action. We find that all possible soft supersymmetry breaking terms can be generated by simply taking into account additional contributions to the action that arise from introducing gaugino masses. In addition there can be contributions from the second Seeley-DeWitt coefficient that is already part of the spectral action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here we assume that each component of the finite Dirac operator generates only a single field, instead of—say—two composite ones.

References

  1. A.H. Chamseddine, A. Connes, The spectral action principle. Commun. Math. Phys. 186, 731–750 (1997)

    Google Scholar 

  2. A.H. Chamseddine, A. Connes, M. Marcolli, Gravity and the standard model with neutrino mixing. Adv. Theor. Math. Phys. 11, 991–1089 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Connes, Noncommutative Geometry (Academic Press, 1994)

    Google Scholar 

  4. A. Connes, Gravity coupled with matter and the foundation of noncommutative geometry. Commun. Math. Phys. 182, 155–176 (1996)

    Article  ADS  MATH  Google Scholar 

  5. A. Connes, Noncommutative geometry year 2000 (2007), math/0011193

  6. L. Dąbrowski, G. Dossena, Product of real spectral triples. Int. J. Geom. Methods Mod. Phys. 8(8), 1833–1848 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Drees, R. Godbole, P. Roy, Theory and Phenomenology of Sparticles (World Scientific Publishing Co., 2004)

    Google Scholar 

  8. K. van den Dungen, W.D. van Suijlekom, Electrodynamics from noncommutative geometry. J. Noncommut. Geom. 7, 433–456 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Fayet, J. Iliopoulos, Spontaneously broken supergauge symmetries and goldstone spinors. Phys. Lett. B 51, 461–464 (1974)

    Article  ADS  Google Scholar 

  10. H. Georgi, S. Dimopoulos, Softly broken supersymmetry and \({SU(5)}\). Nucl. Phys. B 193, 150–162 (1981)

    Article  ADS  Google Scholar 

  11. P.B. Gilkey, Invariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem. Mathematics Lecture Series, vol. 11 (Publish or Perish, Wilmington, 1984)

    Google Scholar 

  12. L. Girardello, M.T. Grisaru, Soft breaking of supersymmetry. Nucl. Phys. B Proc. Suppl. 194, 65–76 (1981)

    Article  Google Scholar 

  13. J.M. Gracia-Bondía, J.C. Várilly, H. Figueroa, Elements of Noncommutative Geometry. Birkhäuser Advanced Texts (2000)

    Google Scholar 

  14. J.F. Gunion, H.E. Haber, Higgs bosons in supersymmetric models (l). Nuclear Phys. B, 272(1), (1986)

    Google Scholar 

  15. T. Krajewski, Classification of finite spectral triples. J. Geom. Phys. 28, 1–30 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. F. Lizzi, G. Mangano, G. Miele, G. Sparano, Fermion Hilbert space and Fermion doubling in the noncommutative geometry approach to gauge theories. Phys. Rev. D 55, 6357–6366 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  17. L. O’Raifeartaigh, Spontaneous symmetry breaking for chiral scalar superfields. Nucl. Phys. B Proc. Suppl. 96, 331–352 (1975)

    Article  Google Scholar 

  18. T. Schücker, Spin Group and Almost Commutative Geometry (2007), hep-th/0007047

  19. J. Wess, B. Zumino, Supergauge invariant extension of quantum electrodynamics. Nucl. Phys. B Proc. Suppl. 78, 1–13 (1974)

    Article  Google Scholar 

  20. P. West, Introduction to Supersymmetry and Supergravity, 2nd edn. (World Scientific Publishing, 1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thijs van den Broek .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Beenakker, W., van den Broek, T., van Suijlekom, W.D. (2016). Supersymmetry Breaking. In: Supersymmetry and Noncommutative Geometry. SpringerBriefs in Mathematical Physics, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-24798-4_3

Download citation

Publish with us

Policies and ethics