Advertisement

Supersymmetric Almost-Commutative Geometries

  • Wim Beenakker
  • Thijs van den Broek
  • Walter D. van Suijlekom
Chapter
Part of the SpringerBriefs in Mathematical Physics book series (BRIEFSMAPHY, volume 9)

Abstract

We give a systematic analysis of the possibilities for almost-commutative geometries on a 4-dimensional, flat background to exhibit not only a particle content that is eligible for supersymmetry but also have a supersymmetric action. We come up with an approach in which we identify the basic ‘building blocks’ of potentially supersymmetric theories and the demands for their action to be supersymmetric. Examples that satisfy these demands turn out to be sparse.

Keywords

Building Block Gauge Boson Dirac Operator Kinetic Term Gauge Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J. Bhowmick, F. D’Andrea, B. Das, L. Dąbrowski, Quantum gauge symmetries in noncommutative geometry. J. Noncomm. Geom. 8, 433–471 (2014)Google Scholar
  2. 2.
    T. van den Broek, W.D. van Suijlekom, Supersymmetric QCD and noncommutative geometry. Comm. Math. Phys. 303(1), 149–173 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    A.H. Chamseddine, Connection between space-time supersymmetry and noncommutative geometry. Phys. Lett. B B332, 349–357 (1994)ADSCrossRefGoogle Scholar
  4. 4.
    A.H. Chamseddine, A. Connes, Universal formula for noncommutative geometry actions: unifications of gravity and the standard model. Phys. Rev. Lett. 77, 4868–4871 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    A.H. Chamseddine, A. Connes, The spectral action principle. Comm. Math. Phys. 186, 731–750 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    A.H. Chamseddine, A. Connes, Why the standard model. J. Geom. Phys. 58, 38–47 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    A.H. Chamseddine, A. Connes, M. Marcolli, Gravity and the standard model with neutrino mixing. Adv. Theor. Math. Phys. 11, 991–1089 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    A. Connes, M. Marcolli, Noncommutative Geometry, Quantum Fields and Motives (American Mathematical Society, 2007)Google Scholar
  9. 9.
    M. Drees, R. Godbole, P. Roy, Theory and Phenomenology of Sparticles (World Scientific Publishing Co., Singapore, 2004)Google Scholar
  10. 10.
    K. van den Dungen, W.D. van Suijlekom, Particle physics from almost-commutative spacetimes. Rev. Math. Phys. 24, 1230004 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    T. Krajewski, Classification of finite spectral triples. J. Geom. Phys. 28, 1–30 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    H.B. Lawson, M.-L. Michelsohn, Spin Geometry (Princeton University Press, New Jersey, 1989)zbMATHGoogle Scholar
  13. 13.
    P. van Nieuwenhuizen, A. Waldron, On euclidean spinors and wick rotations. Phys. Lett. B 389, 29–36 (1996). arXiv:hep-th/9608174 ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    K. Osterwalder, R. Schrader, Axioms for Euclidean Green’s functions I. Comm. Math. Phys. 31, 83–112 (1973)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    K. Osterwalder, R. Schrader, Axioms for Euclidean Green’s functions II. Commun. Math. Phys. 42, 281–305 (1975)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Wim Beenakker
    • 1
    • 2
  • Thijs van den Broek
    • 3
  • Walter D. van Suijlekom
    • 1
  1. 1.Faculty of ScienceRadboud University NijmegenNijmegenThe Netherlands
  2. 2.University of AmsterdamAmsterdamThe Netherlands
  3. 3.NikhefRadboud University NijmegenNijmegenThe Netherlands

Personalised recommendations