Skip to main content

Introduction

  • Chapter
  • First Online:
Supersymmetry and Noncommutative Geometry

Part of the book series: SpringerBriefs in Mathematical Physics ((BRIEFSMAPHY,volume 9))

  • 1151 Accesses

Abstract

We introduce the core concepts and formalisms that are needed in our search for a noncommutative geometric description of supersymmetric theories. We start with a concise overview of supersymmetry and the minimal supersymmetric extension of the Standard Model (MSSM). We then provide a bird’s eye view of noncommutative geometry, geared towards its applications in high-energy physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The possible values for N, the number of supersymmetry generators, depend on the space-time dimension. For example, for \(d = 4\), \(N = 1, 2, 4\) or 8.

  2. 2.

    This makes it an example of \(N=1\) supersymmetry.

  3. 3.

    One should keep in mind though that Minkowski space is not an example of a Riemannian manifold. Rather it is pseudo-Riemannian since its metric is diagonal with negative entries.

  4. 4.

    The parameter \(\varLambda \) more or less serves as a cut-off, and will in the derivation of the SM (Sect. 1.2.3 ahead) be interpreted as the GUT-scale.

  5. 5.

    To be explicit, the element \((\lambda , q, m)\in \mathscr {A}_F\) acts on—say—\({\mathbf {2}} \otimes {\mathbf {3}}^o \ni v\otimes \bar{w}\) as \(qv \otimes \bar{w} m = qv \otimes \overline{m^*w}\).

  6. 6.

    An exception to this rule is when one component of the algebra acts in the same way on more than one different representations in \(\mathscr {H}_F\).

References

  1. G. Aad et al., ATLAS and CMS collaborations. Combined measurement of the Higgs boson mass in \(pp\) collisions at \(\sqrt{s}=7\) and 8 TeV with the ATLAS and CMS experiments. Phys. Rev. Lett. 114, 191803 (2015)

    Article  ADS  Google Scholar 

  2. E. Alvarez, J. Gracia-Bondía, C. Martín, Anomaly cancellation and gauge group of the standard model in NCG. Phys. Lett. B 364, 33–40 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  3. A. Bilal, Introduction to supersymmetry. hep-th/0101055 (2007)

    Google Scholar 

  4. S. Brazzale, Overview of SUSY results from the ATLAS experiment. Technical report ATL-PHYS-PROC-2013-339, CERN, Geneva (2013)

    Google Scholar 

  5. A. Chamseddine, A. Connes, M. Marcolli, Gravity and the standard model with neutrino mixing. Adv. Theor. Math. Phys. 11, 991–1089 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Chamseddine, A. Connes, W.D. van Suijlekom, Grand unification in the spectral pati-salam model. arXiv:1507.08161. (To appear in JHEP)

  7. A. Chamseddine, A. Connes, Universal formula for noncommutative geometry actions: unifications of gravity and the standard model. Phys. Rev. Lett. 77, 4868–4871 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. A. Chamseddine, A. Connes, The spectral action principle. Commun. Math. Phys. 186, 731–750 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. A. Chamseddine, A. Connes, Resilience of the spectral standard model. J. High Energy Phys. 1209, 104 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  10. D. Chung, L. Everett, G. Kane, S. King, J. Lykken, L. Wang, The soft supersymmetry-breaking Lagrangian: theory and applications. Phys. Rep. 407, 1–203 (2005)

    Article  ADS  Google Scholar 

  11. S. Coleman, J. Mandula, All possible symmetries of the \({S}\)-matrix. Phys. Rev. D 159(3), 1251–1256 (1967)

    Article  ADS  MATH  Google Scholar 

  12. A. Connes, Compact metric spaces, fredholm modules, and hyperfiniteness. Ergod. Theory Dyn. Syst. 9, 207–220 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Connes, Noncommutative Geometry (Academic Press, Boston, 1994)

    MATH  Google Scholar 

  14. A. Connes, Noncommutative geometry and reality. J. Math. Phys. 36, 6194 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. A. Connes, Gravity coupled with matter and the foundation of noncommutative geometry. Commun. Math. Phys. 182, 155–176 (1996)

    Article  ADS  MATH  Google Scholar 

  16. A. Connes, J. Lott, Particle models and noncommutative geometry. Nucl. Phys. B Proc. Suppl. 18, 29–47 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. A. Connes, M. Marcolli, Noncommutative Geometry, Quantum Fields and Motives (American Mathematical Society, Providence, 2007)

    Book  MATH  Google Scholar 

  18. L. Dąbrowski, G. Dossena, Product of real spectral triples. Int. J. Geom. Methods Mod. Phys. 8, 1833–1848 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Drees, R. Godbole, P. Roy, Theory and phenomenology of Sparticles (World Scientific Publishing Co., Singapore, 2004)

    Google Scholar 

  20. D. Freed, D. Morrison, I. Singer, Quantum Field Theory, Supersymmetry & Enumerative geometry (American Mathematical Society, Providence, 2006)

    Book  MATH  Google Scholar 

  21. P. Gilkey, Invariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem, Mathematics Lecture Series, vol. 11 (Publish or Perish, Wilmington, 1984)

    Google Scholar 

  22. J. Gracia-BondĂ­a, J. VĂ¡rilly, H. Figueroa, Elements of Noncommutative Geometry (Birkhäuser Advanced Texts, Boston, 2000)

    MATH  Google Scholar 

  23. R. Haag, J.L. opusański, M. Sohnius, All possible generators of supersymmetries of the \({S}\)-matrix. Nucl. Phys. B Proc. Suppl. 88, 257–274 (1975)

    Article  MathSciNet  Google Scholar 

  24. B. Iochum, T. SchĂ¼cker, C. Stephan, On a classification of irreducible almost commutative geometries. J. Math. Phys. 45, 5003–5041 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. D. Kazakov, Beyond the standard model (in Search of Supersymmetry). hep-ph/0012288 (2009)

  26. T. Krajewski, Classification of finite spectral triples. J. Geom. Phys. 28, 1–30 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. G. Landi, An Introduction to Noncommutative Spaces and Their Geometries, (Lecture Notes in Physics Monographs) (Springer, Berlin, 1998)

    MATH  Google Scholar 

  28. F. Lizzi, G. Mangano, G. Miele, G. Sparano, Fermion Hilbert space and Fermion doubling in the noncommutative geometry approach to gauge theories. Phys. Rev. D 55, 6357–6366 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  29. J. Lykken, Introduction to supersymmetry. hep-th/9612114 (2007)

  30. S. Martin, A supersymmetry primer. hep-ph/9709356 (2011)

  31. K. van den Dungen, W. van Suijlekom, Particle physics from almost-commutative spacetimes. Rev. Math. Phys. 24, 1230004 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. W.D. van Suijlekom, Renormalizability conditions for almost-commutative manifolds. Ann. Henri Poincare 15, 985–1011 (2014)

    Google Scholar 

  33. W.D. van Suijlekom, Noncommutative Geometry and Particle Physics (Springer, Dordrecht, 2015)

    Book  MATH  Google Scholar 

  34. F.J. Vanhecke, On the product of real spectral triples. Lett. Math. Phys. 50, 157–162 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. J. VĂ¡rilly, An Introduction to Noncommutative Geometry (European Mathematical Society, Zurich, 2006)

    Book  MATH  Google Scholar 

  36. J. Wess, J. Bagger, Supersymmetry and Supergravity (Princeton University Press, Princeton, 1992)

    MATH  Google Scholar 

  37. J. Wess, B. Zumino, Supergauge transformations in four dimensions. Nucl. Phys. B Proc. Suppl. 70, 39–50 (1974)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thijs van den Broek .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Beenakker, W., van den Broek, T., van Suijlekom, W.D. (2016). Introduction. In: Supersymmetry and Noncommutative Geometry. SpringerBriefs in Mathematical Physics, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-24798-4_1

Download citation

Publish with us

Policies and ethics