Skip to main content

Management of Severe Bleeding in Cardiovascular Patients

  • Chapter
  • First Online:
Point-of-Care Tests for Severe Hemorrhage

Abstract

Cardiac operations represent a clinical environment where a specific pattern of coagulopathy takes place in the majority of the cases. As a result, cardiac surgery is responsible for the majority of blood transfusions in many countries [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wells AW, Llewelyn CA, Casbard A et al (2009) The EASTR Study: indications for transfusion and estimates of transfusion recipient numbers in hospitals supplied by the National Blood Service. Transfus Med 19:315–328

    Article  CAS  PubMed  Google Scholar 

  2. Edmunds LH, Colman RW (2006) Thrombin during cardiopulmonary bypass. Ann Thorac Surg 82:2315–2322

    Article  PubMed  Google Scholar 

  3. Boisclair SJ, Lane DA, Philippou H (1993) Mechanisms of thrombin generation during surgery and cardiopulmonary bypass. Blood 82:3350–3357

    CAS  PubMed  Google Scholar 

  4. Chung JH, Gikakis N, Rao AK et al (1996) Pericardial blood activates the extrinsic coagulation pathway during clinical cardiopulmonary bypass. Circulation 93:2014–2018

    Article  CAS  PubMed  Google Scholar 

  5. De Somer F, Van Belleghem Y, Caes F et al (2002) Tissue factor as the main activator of the coagulation system during cardiopulmonary bypass. J Thorac Cardiovasc Surg 123:951–958

    Article  PubMed  CAS  Google Scholar 

  6. Albes JM, Stohr IM, Kaluza M et al (2003) Physiological coagulation can be maintained in extracorporeal circulation by means of shed blood separation and coating. J Thorac Cardiovasc Surg 126:1504–1512

    Article  PubMed  Google Scholar 

  7. Wippermann J, Albes JM, Hartrumpf M et al (2005) Comparison of minimally invasive closed circuit extracorporeal circulation with conventional cardiopulmonary bypass and with off-pump technique in CABG patients: selected parameters of coagulation and inflammatory system. Eur J Cardiothorac Surg 28:127–132

    Article  PubMed  Google Scholar 

  8. Khan NU, Wayne CK, Barker J, Strang T (2010) The effects of protamine overdose on coagulation parameters as measured by the thrombelastograph. Eur J Anaesthesiol 27:624–627

    Article  CAS  PubMed  Google Scholar 

  9. Ternström L, Radulovic V, Karlsson M et al (2010) Plasma activity of individual coagulation factors, hemodilution and blood loss after cardiac surgery: a prospective observational study. Thromb Res 126:e128–e133

    Article  PubMed  CAS  Google Scholar 

  10. Teufelsbauer H, Proidl S, Havel M, Vukovich T (1992) Early activation of hemostasis during cardiopulmonary bypass: evidence for thrombin mediated hyperfibrinolysis. Thromb Haemost 68:250–252

    CAS  PubMed  Google Scholar 

  11. Boyle EM Jr, Verrier ED, Spiess BD (1996) Endothelial cell injury in cardiovascular surgery: the procoagulant response. Ann Thorac Surg 62:1549–1557

    Article  PubMed  Google Scholar 

  12. Ranucci M, Frigiola A, Menicanti L, Ditta A, Boncilli A, Brozzi S (2005) Postoperative antithrombin levels and outcome in cardiac operations. Crit Care Med 33:355–360

    Article  CAS  PubMed  Google Scholar 

  13. Hirsch J, Warkentin TE, Shaughnessy SG et al (2001) Heparin and Low-molecular-weight heparin. Mechanisms of action, pharmacokinetics, dosing, monitoring, efficacy and safety. Chest 119:64S–94S

    Article  Google Scholar 

  14. Paparella D, Brister SJ, Buchanan MR (2004) Coagulation disorders of cardiopulmonary bypass: a review. Intensive Care Med 30:1873–1881

    Article  PubMed  Google Scholar 

  15. AmmaT FCF (1997) The effects of heparinase I and protamine on platelet reactivity. Anesthesiology 86:1382–1386

    Article  Google Scholar 

  16. Lindblad B, Wakefield TW, Whitehouse WM Jr, Stanley JC (1998) The effects of protamine sulfate on platelet function. Scand J Thorac Cardiovasc Surg 22:55–59

    Article  Google Scholar 

  17. Barstad RM, Stephens RW, Hamers MJ, Sakariassen KS (2000) Protamine sulphate inhibits platelet membrane glycoprotein Ib-von Willebrand factor activity. Thromb Haemost 83:334–337

    CAS  PubMed  Google Scholar 

  18. Despotis GJ, Joist JH (1991) Anticoagulation and anticoagulation reversal with cardiac surgery involving cardiopulmonary bypass: an update. J Cardiothorac Vasc Anesth 13(suppl 1):18–29

    Google Scholar 

  19. Koster A, Fischer T, Praus M et al (2002) Hemostatic activation and inflammatory response during cardiopulmonary bypass: impact of heparin management. Anesthesiology 97:837–841

    Article  CAS  PubMed  Google Scholar 

  20. Despotis GJ, Joist JH, Hogue CW Jr et al (1996) More effective suppression of hemostatic system activation in patients undergoing cardiac surgery by heparin dosing based on heparin blood concentrations rather than ACT. Thromb Haemost 76:902–908

    CAS  PubMed  Google Scholar 

  21. Tuman KJ, McCarthy RJ, Djuric M, Rizzo V, Ivankovich AD (1994) Evaluation of coagulation during cardiopulmonary bypass with a heparinase-modified thromboelastographic assay. J Cardiothorac Vasc Anesth 8:144–149

    Article  CAS  PubMed  Google Scholar 

  22. Gertler R, Wiesner G, Tassani-Prell P, Braun SL, Martin K (2011) Are the point-of-care diagnostics MULTIPLATE and ROTEM valid in the setting of high concentrations of heparin and its reversal with protamine? J Cardiothorac Vasc Anesth 25:981–986

    Article  CAS  PubMed  Google Scholar 

  23. Mittermayr M, Velik-Salchner C, Stalzer B et al (2009) Detection of protamine and heparin after termination of cardiopulmonary bypass by thrombelastometry (ROTEM): results of a pilot study. Anesth Analg 108:743–750

    Article  CAS  PubMed  Google Scholar 

  24. Mittermayr M, Margreiter J, Velik-Salchner C et al (2005) Effects of protamine and heparin can be detected and easily differentiated by modified thrombelastography (Rotem): an in vitro study. Br J Anaesth 95:310–316

    Article  CAS  PubMed  Google Scholar 

  25. Gronchi F, Perret A, Ferrari E et al (2014) Validation of rotational thromboelastometry during cardiopulmonary bypass: a prospective, observational in-vivo study. Eur J Anaesthesiol 31:68–75

    Article  CAS  PubMed  Google Scholar 

  26. Hyun BH, Pence RE, Davila JC, Butcher J, Custer RP (1962) Heparin rebound phenomenon in extracorporeal circulation. Surg Gynecol Obstet 124:191–198

    Google Scholar 

  27. Purandare SV, Parulkar GB, Panday SR, Bhattacharya S, Bhatt MM (1979) J Postgrad Med 25:70–74

    CAS  PubMed  Google Scholar 

  28. Teoh KHT, Young E, Bradley CA, Hirsh J (1993) Heparin binding proteins. Contribution to heparin rebound after cardiopulmonary bypass. Circulation 88(suppl II):420–425

    Google Scholar 

  29. Martin P, Horkay F, Gupta NK et al (1992) Heparin rebound phenomenon-much ado about nothing? Blood Coagul Fibrinolysis 3:187–191

    CAS  PubMed  Google Scholar 

  30. Bosch YP, Al Dieri R, ten Cate H et al (2014) Measurement of thrombin generation intra-operatively and its association with bleeding tendency after cardiac surgery. Thromb Res 133:488–494

    Article  CAS  PubMed  Google Scholar 

  31. Ranucci M, Laddomada T, Ranucci M, Baryshnikova E (2014) Blood viscosity during coagulation at different shear rates. Physiol Rep 2: pii: e12065. doi:10.14814/phy2.12065

    Google Scholar 

  32. Radulovic V, Hyllner M, Ternström L et al (2012) Sustained heparin effect contributes to reduced plasma thrombin generation capacity early after cardiac surgery. Thromb Res 130:679–687

    Article  CAS  Google Scholar 

  33. Faraoni D, Willems A, Romlin BS, Belisle S, Van der Linden P (2015) Development of a specific algorithm to guide haemostatic therapy in children undergoing cardiac surgery: a single-centre retrospective study. Eur J Anaesthesiol 32:320–329

    Article  PubMed  Google Scholar 

  34. Weber CF, Görlinger K, Meininger D et al (2012) Point-of-care testing: a prospective, randomized clinical trial of efficacy in coagulopathic cardiac surgery patients. Anesthesiology 117:531–547

    Article  PubMed  Google Scholar 

  35. Görlinger K, Dirkmann D, Weber CF, Rahe-Meyer N, Hanke AA (2011) Algorithms for transfusion and coagulation management in massive haemorrhage. Anästh Intensivmed 52:145–159

    Google Scholar 

  36. Görlinger K, Dirkmann D, Hanke AA et al (2011) First-line therapy with coagulation factor concentrates combined with point-of-care coagulation testing is associated with decreased allogeneic blood transfusion in cardiovascular surgery. A retrospective, single-center cohort study. Anesthesiology 115:1179–1191

    PubMed  Google Scholar 

  37. Puetz J (2013) Fresh frozen plasma: the most commonly prescribed hemostatic agent. J Thromb Haemost 11:1794–1799

    CAS  PubMed  Google Scholar 

  38. Tanaka KA, Mazzeffi MA, Grube M, Ogawa S, Chen EP (2013) Three-factor prothrombin complex concentrate and hemostasis after high-risk cardiovascular surgery. Transfusion 53:920–921

    Article  CAS  PubMed  Google Scholar 

  39. Arnékiana V, Camousa J, Fattalb S, Rézaiguia-Delclauxa S, Nottinc R, Stéphana F (2012) Use of prothrombin complex concentrate for excessive bleeding after cardiac surgery. Interact Cardiovasc Thorac Surg 15:382–389

    Article  Google Scholar 

  40. White R, Rushbrook J, McGoldrick J (2008) The dangers of prothrombin complex concentrate administration after heart surgery. Blood Coagul Fibrinolysis 19:609–610

    PubMed  Google Scholar 

  41. Gill R, Herbertson M, Vuylsteke A et al (2009) Safety and efficacy of recombinant activated factor VII: a randomized placebo-controlled trial in the setting of bleeding after cardiac surgery. Circulation 120:21–27

    Article  CAS  PubMed  Google Scholar 

  42. Levi M, Peters M, Buller HR (2005) Efficacy and safety of recombinant factor VIIa for treatment of severe bleeding: a systematic review. Crit Care Med 33:883–890

    Article  CAS  PubMed  Google Scholar 

  43. Kindo M, Hoang Minh T, Gerelli S et al (2014) Plasma fibrinogen level on admission to the intensive care unit is a powerful predictor of postoperative bleeding after cardiac surgery with cardiopulmonary bypass. Thromb Res 134:360–368

    Article  CAS  PubMed  Google Scholar 

  44. Pillai RC, Fraser JF, Ziegenfuss M, Bhaskar B (2014) The influence of circulating levels of fibrinogen and perioperative coagulation parameters on predicting postoperative blood loss in cardiac surgery: a prospective observational study. J Card Surg 29:189–195

    Article  PubMed  Google Scholar 

  45. Faraoni D, Willems A, Savan V, Demanet H, De Ville A, Van der Linden P (2014) Plasma fibrinogen concentration is correlated with postoperative blood loss in children undergoing cardiac surgery. A retrospective review. Eur J Anaesthesiol 31:317–326

    Article  CAS  PubMed  Google Scholar 

  46. Waldén K, Jeppsson A, Nasic S, Backlund E, Karlsson M (2014) Low preoperative fibrinogen plasma concentration is associated with excessive bleeding after cardiac operations. Ann Thorac Surg 97:1199–1206

    Article  PubMed  Google Scholar 

  47. Karlsson M, Ternström L, Hyllner M et al (2009) Prophylactic fibrinogen infusion reduces bleeding after coronary artery bypass surgery. A prospective randomised pilot study. Thromb Haemost 102:137–144

    CAS  PubMed  Google Scholar 

  48. Karlsson M, Ternstrom L, Hyllner M, Baghaei F, Nilsson S, Jeppsson A (2008) Plasma fibrinogen level, bleeding, and transfusion after on-pump coronary artery bypass grafting surgery: a prospective observational study. Transfusion 48:2152–2158

    Article  CAS  PubMed  Google Scholar 

  49. Aljassim O, Karlsson M, Wiklund L, Jeppsson A, Olsson P, Berglin E (2006) Inflammatory response and platelet activation after off-pump coronary artery bypass surgery. Scand Cardiovasc J 40:43–48

    Article  CAS  PubMed  Google Scholar 

  50. Kalina U, Stohr HA, Bickhard H et al (2008) Rotational thromboelastography for monitoring of fibrinogen concentrate therapy in fibrinogen deficiency. Blood Coagul Fibrinolysis 19:777–783

    Article  CAS  PubMed  Google Scholar 

  51. O’Shaughnessy DF, Atterbury C, Bolton Maggs P et al (2004) Guidelines for the use of fresh-frozen plasma, cryoprecipitate and cryosupernatant. Br J Haematol 126:11–28

    Article  PubMed  Google Scholar 

  52. Rossaint R, Bouillon B, Cerny V et al (2010) Management of bleeding following major trauma: an updated European guideline. Crit Care 14:R52

    Article  PubMed  PubMed Central  Google Scholar 

  53. Rahe-Meyer N (2011) Fibrinogen concentrate in the treatment of severe bleeding after aortic aneurysm graft surgery. Thromb Res 128(Suppl 1):S17–S19

    Article  PubMed  CAS  Google Scholar 

  54. Kozek-Langenecker SA, Afshari A, Albaladejo P et al (2013) Management of severe perioperative bleeding: guidelines from the European Society of Anaesthesiology. Eur J Anaesthesiol 20:270–382

    Article  Google Scholar 

  55. Ranucci M, Jeppsson A, Bayshnikova E (2015) Preoperative fibrinogen supplementation in cardiac surgery patients: an evaluation of different trigger values. Acta Anaesthesiol Scand 59:427–433

    Article  CAS  PubMed  Google Scholar 

  56. Theusinger OM, Baulig W, Seifert B, Emmert MY, Spahn DR, Asmis LM (2011) Relative concentrations of haemostatic factors and cytokines in solvent/detergent-treated and fresh-frozen plasma. Br J Anaesth 106:505–511

    Article  CAS  PubMed  Google Scholar 

  57. Pantanowitz L, Kruskall MS, Uhl L (2003) Cryoprecipitate. Patterns of use. Am J Clin Pathol 119:874–881

    Article  PubMed  Google Scholar 

  58. Ranucci M, Solomon C (2012) Supplementation of fibrinogen in acquired bleeding disorders: experience, evidence, guidelines, and licences. Br J Anaesth 109:135–137

    Article  CAS  PubMed  Google Scholar 

  59. Rahe-Meyer N, Pichlmaier M, Haverich A et al (2009) Bleeding management with fibrinogen concentrate targeting a high-normal plasma fibrinogen level: a pilot study. Br J Anaesth 102:785–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rahe-Meyer N, Solomon C, Winterhalter M et al (2009) Thromboelastometry-guided administration of fibrinogen concentrate for the treatment of excessive intraoperative bleeding in thoracoabdominal aortic aneurysm surgery. J Thorac Cardiovasc Surg 138:694–702

    Article  PubMed  Google Scholar 

  61. Ranucci M, Baryshnikova E, Crapelli GB et al (2015) Randomized, double-blinded, placebo-controlled trial of fibrinogen concentrate supplementation after complex cardiac surgery. J Am Heart Assoc 4(6). pii: e002066. doi:10.1161/JAHA.115.002066

  62. Karkouti K, von Heymann C, Jespersen CM et al (2013) Efficacy and safety of recombinant factor XIII on reducing blood transfusions in cardiac surgery: a randomized, placebo-controlled, multicenter clinical trial. J Thorac Cardiovasc Surg 146:927–939

    Article  CAS  PubMed  Google Scholar 

  63. Greilich PE, Brouse CF, Beckham J, Jessen ME, Martin EJ, Carr ME (2002) Reductions in platelet contractile force correlate with duration of cardiopulmonary bypass and blood loss in patients undergoing cardiac surgery. Thromb Res 105:523–529

    Article  CAS  PubMed  Google Scholar 

  64. Ferraris VA, Brown JR, Despotis GJ et al (2011) 2011 update to the society of thoracic surgeons and the society of cardiovascular anesthesiologists blood conservation clinical practice guidelines. Ann Thorac Surg 91:944–982

    Article  PubMed  Google Scholar 

  65. Pickard AS, Becker RC, Schumock GT, Frye CB (2008) Clopidogrel-associated bleeding and related complications in patients undergoing coronary artery bypass grafting. Pharmacotherapy 28:376–392

    Article  CAS  PubMed  Google Scholar 

  66. Berger JS, Frye CB, Harshaw Q, Edwards FH, Steinhubl SR, Becker RC (2008) Impact of clopidogrel in patients with acute coronary syndromes requiring coronary artery bypass surgery: a multicenter analysis. J Am Coll Cardiol 52:1693–1701

    Article  CAS  PubMed  Google Scholar 

  67. Ferraris VA, Ferraris SP, Saha SP et al (2007) Perioperative blood transfusion and blood conservation in cardiac surgery: the society of thoracic surgeons and the society of cardiovascular anesthesiologists clinical practice guideline. Ann Thorac Surg 83(5 Suppl):S27–S86

    Article  PubMed  Google Scholar 

  68. Fitchett D, Eikelboom J, Fremes S et al (2009) Dual antiplatelet therapy in patients requiring urgent coronary artery bypass grafting surgery: a position statement of the Canadian Cardiovascular Society. Can J Cardiol 25:683–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Di Dedda U, Ranucci M, Baryshnikova E, Castelvecchio S; Surgical and Clinical Outcome Research (SCORE) Group (2014) Thienopyridines resistance and recovery of platelet function after discontinuation of thienopyridines in cardiac surgery patients. Eur J Cardiothorac Surg 45:165–170

    Article  Google Scholar 

  70. Ferraris VA, Saha SP, Oestreich JH et al (2012) 2012 update to the Society of Thoracic Surgeons guideline on use of antiplatelet drugs in patients having cardiac and noncardiac operations. Ann Thorac Surg 94:1761–1781

    Article  PubMed  Google Scholar 

  71. Chen L, Bracey AW, Radovancevic R et al (2004) Clopidogrel and bleeding in patients undergoing elective coronary artery bypass grafting. J Thorac Cardiovasc Surg 128:425–431

    Article  PubMed  Google Scholar 

  72. Ranucci M, Baryshnikova E, Soro G, Ballotta A, De Benedetti D, Conti D; Surgical and Clinical Outcome Research (SCORE) Group (2011) Multiple electrode whole-blood aggregometry and bleeding in cardiac surgery patients receiving thienopyridines. Ann Thorac Surg 91:123–129

    Article  Google Scholar 

  73. Ranucci M, Colella D, Baryshnikova E, Di DeddaU; Surgical and Clinical Outcome Research (SCORE) Group (2014) Assessment of preoperative P2Y12 and thrombin platelet receptor inhibition and their relationships with post-cardiac surgical bleeding. Br J Anaesth 113:970–976

    Article  CAS  Google Scholar 

  74. Mahla E, Suarez TA, Bliden KP et al (2012) Platelet function measurement-based strategy to reduce bleeding and waiting time in clopidogrel-treated patients undergoing coronary artery bypass graft surgery: the timing based on platelet function strategy to reduce clopidogrel-associated bleeding related to CABG (TARGETCABG) study. Circ Cardiovasc Interv 5:261–269

    Article  CAS  PubMed  Google Scholar 

  75. Preisman S, Kogan A, Itzkovsky K, Leikin G, Raanani E (2010) Modified thromboelastography evaluation of platelet dysfunction in patients undergoing coronary artery surgery. Eur J Cardiothorac Surg 37:1367–1374

    Article  PubMed  Google Scholar 

  76. Brizzio ME, Shaw RE, Bosticco B et al (2012) Use of an objective tool to assess platelet inhibition prior to off-pump coronary surgery to reduce blood usage. J Invasive Cardiol 24:49–52

    PubMed  Google Scholar 

  77. Alström U, Granath F, Oldgren J, Ståhle E, Tydén H, Siegbahn A (2009) Platelet inhibition assessed with VerifyNow, flow cytometry and PlateletMapping in patients undergoing heart surgery. Thromb Res 124:572–577

    Article  PubMed  CAS  Google Scholar 

  78. Schimmer C, Hamouda K, Sommer SP, Özkur M, Hain J, Leyh R (2013) The predictive value of multiple electrode platelet aggregometry (multiplate) in adult cardiac surgery. Thorac Cardiovasc Surg 61:733–743

    Article  PubMed  Google Scholar 

  79. Orlov D, McCluskey SA, Selby R et al (2014) Platelet dysfunction as measured by a point-of-care monitor is an independent predictor of high blood loss in cardiac surgery. Anesth Analg 118:257–263

    Article  PubMed  Google Scholar 

  80. Steinlechner B, Zeidler P, Base E et al (2011) Patients with severe aortic valve stenosis and impaired platelet function benefit from preoperative desmopressin infusion. Ann Thorac Surg 91:1420–1426

    Article  PubMed  Google Scholar 

  81. Teuselsbauer H, Proidi S, Havel M, Vukovich T (1992) Early activation of hemostasis during cardiopulmonary bypass: evidence for thrombin mediated hyperfibrinolysis. Thromb Haemost 68:250–252

    Google Scholar 

  82. Hunt BJ, Segal H (1996) Hyperfibrinolysis. J Clin Pathol 49:958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Despotis G, Eby C, Lublin DM (2008) A review of transfusion risks and optimal management of perioperative bleeding with cardiac surgery. Transfusion 48(1 Suppl):2S–30S

    Article  CAS  PubMed  Google Scholar 

  84. Despotis GJ, Hogue CW (1999) Pathophysiology, prevention, and cardiac surgery: a primer for cardiologists and an update for the cardiothoracic team. Am J Cardiol 83:15B–30B

    Article  Google Scholar 

  85. Edmunds LH (1993) Blood surface interactions during cardiopulmonary bypass. J Card Surg 8:404–410

    Article  PubMed  Google Scholar 

  86. Chandler WL, Velan T (2003) Secretion of tissue plasminogen activator and plasminogen activator inhibitor 1 during cardiopulmonary bypass. Thromb Res 112:185–192

    Article  CAS  PubMed  Google Scholar 

  87. Gando S, Kameue T, Sawamura A, Hayakawa M, Hoshino H, Kubota N (2007) An alternative pathway for fibrinolysis is activated in patients who have undergone cardiopulmonary bypass surgery and major abdominal surgery. Thromb Res 120:87–93

    Article  CAS  PubMed  Google Scholar 

  88. Chandler WL, Fitch JC, Wall MH, Verrier ED, Cochran RP, Sollow LO, Spiess BD (1995) Individual variations in the fibrinolytic response during and after cardiopulmonary bypass. Thromb Haemost 74:1293–1297

    CAS  PubMed  Google Scholar 

  89. Ozolina A, Strike E, Jaunalksne I, Krumina A et al (2012) PAI-1 and t-PA/PAI-1 complex potential markers of fibrinolytic bleeding after cardiac surgery employing cardiopulmonary bypass. BMC Anesthesiol 12:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Iribarren JL, Jimenez JJ, Hernandez D, Brouard M, Riverol D, Lorente L et al (2008) Postoperative bleeding in cardiac surgery: the role of tranexamic acid in patients homozygous for the 5G polymorphism of the plasminogen activator inhibitor-1 gene. Anesthesiology 108:596–602

    Article  CAS  PubMed  Google Scholar 

  91. de Haan J, Boonstra PW, Monnik SH, Ebels T, van Oeveren W (1995) Retransfusion of suctioned blood during cardiopulmonary bypass impairs hemostasis. Ann Thorac Surg 59:901–907

    Article  PubMed  Google Scholar 

  92. Stibbe J, Kluft C, Brommer EJ, Gomes M, de Jong DS, Nauta J (1984) Enhanced fibrinolytic activity during cardiopulmonary bypass in open heart surgery in main caused by extrinsic (tissue-type) plasminogen activator. Eur J Clin Invest 14:375–382

    Article  CAS  PubMed  Google Scholar 

  93. Tabuchi N, de Haan J, Boonstra PW, van Oeveren W (1993) Activation of fibrinolysis in the pericardial cavity during cardiopulmonary bypass. J Thorac Cardiovasc Surg 106:828–833

    CAS  PubMed  Google Scholar 

  94. Adelman B, Michelson AD, Loscalzo J, Greenberg J, Handin RI (1985) Plasmin effect on platelet glycoprotein Ib-von Willebrand factor interactions. Blood 65:32–40

    CAS  PubMed  Google Scholar 

  95. Laupacis A, Fergusson D (1997) Drugs to minimize perioperative blood loss in cardiac surgery: meta-analyses using perioperative blood loss transfusion as the outcome. Anesth Analg 85:1258–1267

    Article  CAS  PubMed  Google Scholar 

  96. Fremes SE, Bi W, Lee E et al (1994) Meta-analysis of prophylactic drug treatment in the prevention of postoperative bleeding. Ann Thorac Surg 58:1580–1588

    Article  CAS  PubMed  Google Scholar 

  97. Fergusson D, Glass KC, Hutton B, Shapiro S (2005) Randomized controlled trials of aprotinin in cardiac surgery: could clinical equipoise have stopped the bleeding? Clin Trials 2:218–229

    Article  PubMed  Google Scholar 

  98. Henry DA, Carless PA, Moxey AJ et al (2007) Antifibrinolytic use for minimizing perioperative allogenic blood transfusion. Cochrane Database Syst Rev 4:CD001886

    Google Scholar 

  99. Ngaage DL, Bland JM (2010) Lessons from aprotinin: is the routine use and inconsistent dosing of tranexamic acid prudent? Meta-analysis of randomized and large matched observational studies. Eur J Cardiothorac Surg 37:1375–1383

    Article  PubMed  Google Scholar 

  100. Fergusson DA, Hebert PC, Mazer CD et al (2008) A comparison of aprotinin and lysine analogues in high-risk cardiac surgery. N Engl J Med 358(22):2319–2331

    Article  CAS  PubMed  Google Scholar 

  101. Koster A, Schimer U (2011) Re-evaluation of the role of antifibrinolytic therapy with lysine analogs during cardiac surgery in the post aprotinin era. Curr Opin Anaesthesiol 24:92–97

    Article  PubMed  Google Scholar 

  102. Dowd NP, Karski JM, Cheng DC et al (2002) Pharmacokinetics of tranexamic acid during cardiopulmonary bypass. Anesthesiology 97:390–399

    Article  CAS  PubMed  Google Scholar 

  103. Fiechtner BK, Nuttal GA, Johnson ME et al (2001) Plasma Tranexamic acid concentrations during cardiopulmonary bypass. Anesth Analg 92:1131–1136

    Article  CAS  PubMed  Google Scholar 

  104. Ender J, Brüning J, Mukherjee C et al (2010) Tranexamic acid increases the risk of postoperative seizures in adults undergoing on-pump cardiac surgery. J Cardiothorac Vasc Anesth 24(Suppl):P-78

    Google Scholar 

  105. Sander M, Spies C, Martiny V et al (2010) Mortality associated with administration of high-dose tranexamic acid and aprotinin in primary open-heart procedures: a retrospective analysis. Crit Care 14:R148

    Article  PubMed  PubMed Central  Google Scholar 

  106. Dietrich W, Nicklisch S, Koster A, Spannagl M, Giersiefen H, van de Locht A (2009) CU-2010--a novel small molecule protease inhibitor with antifibrinolytic and anticoagulant properties. Anesthesiology 110:123–130

    Article  CAS  PubMed  Google Scholar 

  107. Stensballe J, Ostrowski RS, Johansson PI (2014) Viscoelastic guidance of resuscitation. Curr Opin Anaesthesiol 27:212–218

    Article  PubMed  Google Scholar 

  108. O’Shaughnessy D, Gill R (2009) Cardiothoracic surgery. In: Key N, Markis M, O’Shaughnessy D et al (eds) Practical hemostasis and thrombosis. Wiley-Blackwell, Chichester, pp 194–208

    Google Scholar 

  109. Luddington RJ (2005) Thrombelastography/thromboelastometry. Clin Lab Haematol 27:81–90

    Article  CAS  PubMed  Google Scholar 

  110. Diprose P, Herbertson MJ, O’Shaughnessy D, Deakin CD, Gill RS (2005) A randomized double-blind placebo-controlled trial of antifibrinolytic therapies used in addition to intraoperative cell savage. Br J Anaesth 94:271–278

    Article  CAS  PubMed  Google Scholar 

  111. Wolf M, Maher K, Kanter K, Kogon B, Guzzetta N, Mahle W (2014) Early postoperative bleeding is independently associated with increased surgical mortality in infants after cardiopulmonary bypass. J Thorac Cardiovasc Surg 148:631–636

    Article  PubMed  Google Scholar 

  112. Andrew M, Paes B, Milner R et al (1998) Development of the human coagulation system in the healthy premature infant. Blood 72:1651–1657

    Google Scholar 

  113. Monagle P, Massicotte P (2011) Developmental haemostasis: secondary haemostasis. Semin Fetal Neonatal Med 16:294–300

    Article  PubMed  Google Scholar 

  114. Monagle P, Ignjatovic V, Savoia H (2010) Hemostasis in neonates and children: pitfalls and dilemmas. Blood Rev 24:63–68

    Article  CAS  PubMed  Google Scholar 

  115. Guzzetta NA, Miller BE (2010) Principles of hemostasis in children: models and maturation. Paediatr Anaesth 21:3–9

    Article  PubMed  Google Scholar 

  116. Oswald E, Stalzer B, Heitz E et al (2010) Thromboelastometry (ROTEM) in children: age-related reference ranges and correlations with standard coagulation tests. Br J Anaesth 105:827–835

    Article  CAS  PubMed  Google Scholar 

  117. Chan KL, Summerhayes RG, Ignjatovic V, Horton SB, Monagle PT (2007) Reference values for kaolin-activated thromboelastography in healthy children. Anesth Analg 105:1610–1613

    Article  PubMed  Google Scholar 

  118. Miller BE, Bailey JM, Mancuso TJ et al (1997) Functional maturity of the coagulation system in children: an evaluation using thrombelastography. Anesth Analg 84:745–748

    Article  CAS  PubMed  Google Scholar 

  119. Odegard KC, Zurakowski D, DiNardo JA et al (2009) Prospective longitudinal study of coagulation profiles in children with hypoplastic left heart syndrome from stage I through Fontan completion. J Thorac Cardiovasc Surg 137:934–941

    Article  CAS  PubMed  Google Scholar 

  120. Odegard KC, Zurakowski D, Hornykewycz S et al (2007) Evaluation of the coagulation system in children with two-ventricle congenital heart disease. Ann Thorac Surg 83:1797–1804

    Article  PubMed  Google Scholar 

  121. Haizinger B, Gombotz H, Rehak P, Geiselseder G, Mair R (2006) Activated thrombelastogram in neonates and infants with complex congenital heart disease in comparison with healthy children. Br J Anaesth 97:545–552

    Article  CAS  PubMed  Google Scholar 

  122. Osthaus WA, Boethig D, Johanning K et al (2008) Whole blood coagulation measured by modified thrombelastography (ROTEM) is impaired in infants with congenital heart diseases. Blood Coagul Fibrinolysis 19:220–225

    Article  PubMed  Google Scholar 

  123. Faraoni D, Van der Linden P (2014) Factors affecting postoperative blood loss in children undergoing cardiac surgery. J Cardiothorac Surg 9:32

    Article  PubMed  PubMed Central  Google Scholar 

  124. Arslan MT, Ozyurek R, Kavakli K et al (2007) Frequency of acquired von Willebrand’s disease in children with congenital heart disease. Acta Cardiol 62:403–408

    Article  PubMed  Google Scholar 

  125. Wiegand G, Hofbeck M, Zenker M, Budde U, Rauch R (2012) Bleeding diathesis in Noonan syndrome: Is acquired von Willebrand syndrome the clue? Thromb Res 130:e251–e254

    Article  CAS  PubMed  Google Scholar 

  126. Lill MC, Perloff JK, Child JS (2006) Pathogenesis of thrombocytopenia in cyanotic congenital heart disease. Am J Cardiol 98:254–258

    Article  CAS  PubMed  Google Scholar 

  127. Kierzkowska B, Stanczyk J, Wiectawska B et al (2001) Activation of circulating platelets and platelet response to activating agents in children with cyanotic congenital heart disease: their relevance to palliative systemic-pulmonary shunt International. Int J Cardiol 79:49–59

    Article  CAS  PubMed  Google Scholar 

  128. Horigome H, Hiramatsu Y, Shigeta O, Nagasawa T, Matsui A (2002) Overproduction of platelet microparticles in cyanotic congenital heart disease with polycythemia. J Am Coll Cardiol 39:1072–1077

    Article  PubMed  Google Scholar 

  129. Jensen AS, Johansson PI, Bochsen J (2013) Fibrinogen function is impaired in whole blood from patients with cyanotic congenital heart disease. Int J Cardiol 167:2210–2214

    Article  CAS  PubMed  Google Scholar 

  130. Jensen AS, Johansson PI, Idorn L (2013) The haematocrit - an important factor causing impaired haemostasis in patients with cyanotic congenital heart disease. Int J Cardio 167:1317–1321

    Google Scholar 

  131. Kern FH, Morana NJ, Sears JJ, Hickey PR (1992) Coagulation defects in neonates during cardiopulmonary bypass. Ann Thorac Surg 54:541–546

    Article  CAS  PubMed  Google Scholar 

  132. Koestenberger M, Cvirn G, Nagel B et al (2008) Thrombin generation determined by calibrated automated thrombography (CAT) in pediatric patients with congenital heart disease. Thromb Res 122:13–19

    Article  CAS  PubMed  Google Scholar 

  133. Bosch Y, Al Dieri R, ten Cate H et al (2013) Preoperative thrombin generation is predictive for the risk of blood loss after cardiac surgery: a research article. J Cardiothorac Surg 8:154

    Article  PubMed  PubMed Central  Google Scholar 

  134. Giorni C, Ricci Z, Iodice F et al (2014) Use of Confidex to control perioperative bleeding in pediatric heart surgery: prospective cohort study. Pediatr Cardiol 35:208–214

    Article  PubMed  Google Scholar 

  135. McQuilten ZK, Barnes C, Zatta A, Phillips LE (2012) Off-Label use of recombinant Factor VIIa in pediatric patients. Pediatrics 129:e1533–e1540

    Article  PubMed  Google Scholar 

  136. Warren OJ, Rogers PL, Watret al et al (2009) Defining the role of recombinant activated factor VII in pediatric cardiac surgery: where should we go from here? Pediatr Crit Care Med 10:572–582

    Google Scholar 

  137. Galas FR, de Almeida JP, Fukushima JT et al (2014) Hemostatic effects of fibrinogen concentrate compared with cryoprecipitate in children after cardiac surgery: a randomized pilot trial. J Thorac Cardiovasc Surg 148:1647–1655

    Article  CAS  PubMed  Google Scholar 

  138. Miao X, Liu J, Zhao M et al (2015) Evidence-based use of FFP: the influence of a priming strategy without FFP during CPB on postoperative coagulation and recovery in pediatric patients. Perfusion 30:140–147

    Article  CAS  PubMed  Google Scholar 

  139. Faraoni D, Sanchez Torres C (2014) No evidence to support a priming strategy with FFP in infants. Eur J Pediatr 173:1445–1446

    Article  PubMed  Google Scholar 

  140. Romlin BS, Soderlund F, Wahlander H, Nilsson B, Baghaei F, Jeppsson A (2014) Platelet count and function in paediatric cardiac surgery: a prospective observational study. Br J Anaesth 113:847–854

    Article  CAS  PubMed  Google Scholar 

  141. Andreasen B, Hvas AM, Ravn HB (2014) Marked changes in platelet count and function following pediatric congenital heart surgery. Paediatr Anaesth 24:386–392

    Article  Google Scholar 

  142. Ranucci M, Carlucci C, Isgrò G, Baryshnikova E (2012) A prospective pilot study of platelet function and its relationship with postoperative bleeding in pediatric cardiac surgery. Minerva Anestesiol 78:556–563

    CAS  PubMed  Google Scholar 

  143. Tirosh-Wagner T, Strauss T, Rubinshtein M et al (2011) Point of care testing in children undergoing cardiopulmonary bypass. Pediatr Blood Cancer 56:794–798

    Article  PubMed  Google Scholar 

  144. Hofer A, Kozek-Langenecker S, Schaden E, Panholzer M, Gombotz H (2011) Point-of-care assessment of platelet aggregation in paediatric open heart surgery. Br J Anaesth 107:587–592

    Article  CAS  PubMed  Google Scholar 

  145. Mujeeb Zubair M, Bailly DK, Lantz G (2015) Preoperative platelet dysfunction predicts blood product transfusion in children undergoing cardiac surgery. Interact Cardiovasc Thorac Surg 20:24–30

    Article  PubMed  Google Scholar 

  146. Ignjatovic V, Chandramouli A, Than J et al (2012) Plasmin generation and fibrinolysis in pediatric patients undergoing cardiopulmonary bypass surgery. Pediatr Cardiol 33:280–285

    Article  PubMed  Google Scholar 

  147. Williams GD, Bratton SL, Nielsen NJ, Ramamoorthy C (1988) Fibrinolysis in pediatric patients undergoing cardiopulmonary bypass. J Cardiothorac Vasc Anesth 12:633–638

    Article  Google Scholar 

  148. Eaton MP (2008) Antifibrinolytic therapy in surgery for congenital heart disease. Anesth Analg 106:1087–1100

    Article  CAS  PubMed  Google Scholar 

  149. Niebler R, Gill JC, Brabant CP (2012) Thromboelastography in the assessment of bleeding following surgery for congenital heart disease. World J Pediatr Congenit Heart Surg 3:433–438

    Article  PubMed  Google Scholar 

  150. Faraoni D, Fenger-Eriksen C, Gillard S et al (2015) Evaluation of dynamic parameters of thrombus formation measured on whole blood using rotational thromboelastometry in children undergoing cardiac surgery: a descriptive study. Paediatr Anaesth 25:573–579

    Article  PubMed  Google Scholar 

  151. Romlin B, Wåhlander H, Synnergren M, Baghaei F, Jeppsson A (2013) Earlier detection of coagulopathy with thromboelastometry during pediatric cardiac surgery: a prospective observational study. Paediatr Anaesth 23:222–227

    Article  PubMed  Google Scholar 

  152. Romlin B, Wåhlander H, Berggren H et al (2011) Intraoperative thromboelastometry is associated with reduced transfusion prevalence in pediatric cardiac surgery. Anesth Analg 112:30–36

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Ranucci MD, FESC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ranucci, M., Martinez, B., Colella, D., Haxhiademi, D. (2016). Management of Severe Bleeding in Cardiovascular Patients. In: Ranucci, M., Simioni, P. (eds) Point-of-Care Tests for Severe Hemorrhage. Springer, Cham. https://doi.org/10.1007/978-3-319-24795-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24795-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24793-9

  • Online ISBN: 978-3-319-24795-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics